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ABSTRACT

Array shape estimation is an important problem in
array signal processing. We present an iterative algorithm
that estimates two dimensional array element positions via
an algebraic solution to a least squares problem, under the
assumption that the sources are in the far-field with
unknown positions. Under some assumptions, we calculate
the dependence of performance on the distribution of the
localizing sources. We give examples of algorithm perfor-
mance from both simulations and real data. We also illus-
trate algorithm performance for horizontal arrays as a
function of time delay estimation variance and the variance
of vertical arrival angle estimates.

1. INTRODUCTION

Array shape estimation is an important problem in
array signal processing. Without adequate knowledge of
sensor positions, array gain losses due to mismatch for
adaptive beamforming [1] and sidelobe levels for conven-
tional beamforming can be large. Super resolution algo-
rithms are also highly sensitive to errors in sensor positions.

A number of algorithms for array shape estima-
tion have been introduced in recent years. Rockah and
Schultheiss [2] have examined the sensor location uncer-
tainty problem in detail, presenting an algorithm for array
shape estimation using disjoint sources, which can be sepa-
rated in either time or frequency, and deriving the Cramer-
Rao lower bound on the variance of the estimated sensor
positions. Weiss and Friedlander [3] have discussed an iter-
ative algorithm for array shape estimation, using estimated
sensor positions to obtain a maximum likelihood estimate
of the arrival angles of the incident energy from the localiz-
ing sources, and using these arrival angle estimates to
obtain an estimate of each sensor position which minimizes
an objective function. Lo and Marple have suggested an
eigenstructure based method for array shape estimation [4]
when the directions of sources are known, and have also
addressed observability conditions for the array shape esti-
mation problem [5].
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In this paper, we introduce an iterative array shape
estimation algorithm based on constrained least squares.
The method is similar in nature to [3] but estimates sensor
positions via an algebraic solution of a constrained least-
squares problem. We assume that array sensor separations
are physically constrained to be less than or equal to the
nominal values as is often the case in, for example, cabled
arrays of hydrophones for sonar signal processing. We also
relax the assumption of sources being co-planar with the
array of sensors. Array shape information is obtained from
sources of opportunity with no assumptions of temporal or
spectral disjointness.

2. ALGORITHM FORMULATION

Let the distance in the direction of source k from
sensor 1 to sensor i+1 be denoted as dj;. That is, place
sensor 1 at the origin, and let d,; be defined as d; =slr;,
where s, is the direction vector for the k* source and r;
is the position vector for sensor i+1. Assuming that all
sources being used are in the far-field, so that a planewave
assumption is valid, these distances are related to the sensor
positions and directions of arrival (DOA) as

di; = X;41 5in(6) ) cos(@y) + y;1 cos(B ) cos(gy) (1)

where 8, is the DOA of energy from source k, in the x-y
plane relative to the positive y axis, and ¢, is the DOA
above the x-y plane, or the vertical arrival angle. Given n
sensors and p sources, this relationship results in a set of
linear equations given by
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Using an estimate of D, denoted as D, and obtained from
the data via crosscorrelation between sensor pairs, or alter-
native techniques, and an estimate of @ , denoted as @, a
quadratically constrained least-squares problem may be for-
mulated as

an A2 Ao
I%inn(DA i—D; !2 subject to "A i—Ai
i

]2 <o (6)

where the subscript i denotes the i# column, and o; is the
nominal distance between sensor i+1 and sensor i. Equa-
tion (6) can be solved via singular value decomposition and
the method of Lagrange multipliers [6].

We find the arrival angles which minimize the
error between the observed distances and those calculated
from the current estimate of sensor positions by solving

min[AT@7), - BT), | 7
ek,m"A M N @
for k=1,2,...,, p, under the assumption of either known or
unknown vertical arrival angles. Note that (7) is nonlinear
in 6;,¢; , but can be solved via a simple one or two dimen-
sional search (depending on whether ¢, is assumed
known), or other more efficient techniques. In some cases,
vertical arrival angles may be assumed known, as in some
underwater acoustics problems where the sound speed pro-
file and bottom properties result in an asymptotic vertical
arrival angle for long range sources. After arrival angles
are estimated, a new set of sensor positions is calculated
using (6). The above two steps are repeated until conver-
gence is obtained. Convergence is obtained when the fit to
D goes essentially unimproved, that is

"ﬁ - ‘i’(m - I)A(m - 1)" - "f) - &’(m)A(m)" <E @®)

where A(m) and 6(m) denote the estimates of A and @
at iteration m.

3. SIMULATION EXAMPLE

Figure 1 shows the nominal and actual array ele-
ment positions as a percentage of nominal array length for a
10 element tapered array. The actual array is bowed with
peak bow displacement equal to 10% of the array’s aper-
ture. The integrated array length is 97 percent of nominal,
indicating that the array is also contracted by 3 percent.
Figure 2 shows the error in estimated element positions ver-
sus iteration number for the constrained algorithm and for
the unconstrained algorithm ( ¢; = oo in (6)). For this simu-
lation, we let the d;; estimates have a Gaussian distributed
error with zero mean and a standard deviation of 0.9% of

the average nominal element spacing. We also let the verti-
cal arrival angles be Gaussian distributed with a mean of
10° above horizontal, and a standard deviation of 5°. Thirty
sources were used, distributed uniformly [0°,180°] over azi-
muth. Note that the constrained algorithm converges faster
than the unconstrained algorithm.
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FIG.1 Nominal (0) and actual (*) array configurations for

simulation example.

RMS._. (Constrained)

RMS error (% of average nominal ¢lement spacing)

0 10 20 30 40 50 60 70 80
Iteration

FIG.2 RMS error in array element position estimates, as a

percentage of average nominal element spacing, vs. number

of iterations for simulation example.

4. DATA EXAMPLE

Figure 3 shows the nominal, actual, and estimated
array element positions as a percentage of total nominal
array length for an underwater bottom mounted horizontal
line array. Crosscorrelation between sensor pairs was used
to generate an estimate of D, using 16 source samples
selected from the correlagrams. The vertical arrival angle
was assumed to be 10° above horizontal. The RMS differ-
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ence between the estimated and actual positions is 0.85% of
the average nominal element spacing. (The actual positions
were obtained via a high-accuracy technique which utilizes
known source positions.)
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FIG.3 Nominal (*), actual (0), and estimated (x) array ele-
ment positions for underwater acoustic array example.

5. ERROR ANALYSIS

In practice, measurements of D from the data will
be corrupted by noise. The appropriate linear model is then

D=®-A+N )

where N is a noise matrix, representing noise in the estimare
of D. Given the arrival angle matrix, ® , the least squares
solution for each column of A in the absence of active con-
straints may be expressed as [6]

a=o'd (10)

where @7 = (@ ®)" @7, and d is the appropriate col-
umn of D.

If n, a column of N, is assumed Gaussian distrib-
uted as N(O, 0',2,1) , then the least squares solution for a,
given by (10), is unbiased and Gaussian distributed with
covariance matrix given by [7]

cov(d) = o2 (@ @)~ (11)

The Gaussian assumption on the distribution of N is reason-
able for cross-correlation based time delay estimates assum-
ing uncorrelated Gaussian signal and noise at high SNR [8].
The variance of the error in element positions (for both x
andy,i.e. O'fy = 0'% + 0'3 ) may then by quantified as

0% = trace[ (@7 @) (12)
The trace of ((I>T<I>)‘1 may be written as

trace|(@7 @) | = W;—T— race@’®)  (13)
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14
trace(®7 ®) = Y cos®(¢;) (14)
i=1
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det @ @)= Y Y cos?(9;)cos? (¢ )sin*(8; — ;) (15)
i=lk=i+1

Note from (15) that for finite variance in the esti-
mated element positions, the arrival angles of the localizing
sources must be different (see also [5]). Figure 4 shows a
plot of element position estimate variance versus the width
of the bearing sector over which the sources are uniformly
distributed for 10, 20, and 50 sources (vertical arrival
angles were 10°). Note that as the number of sources
increases, or the width of the bearing sector over which the
sources are uniformly distributed increases, the variance in
the element position estimates decreases.

6. NUMERICAL PERFORMANCE EVALUATION

We numerically evaluate algorithm performance,
for the array configuration of Figure 1, with respect to vari-
ance in time delay estimation noise (or equivalently vari-
ance in dj; estimates, given by 0',%) and variance in the
error between assumed and actual vertical arrival angles, or

o"%. We assume time delay estimation errors are indepen-
dently Gaussian distributed with zero mean for each source.
We also assume vertical arrival angles to be Gaussian dis-
tributed, with known mean. We evaluate RMS error in esti-
mated element positions using 50 realizations for each
scenario of interest. Figure 5 shows the mean RMS error in
element positions versus time delay estimation variance,
assuming o’% =0, for p=10, 20 and 50. Figure 6 illustrates
RMS error versus vertical arrival angle variance
(0, =0.9% of average nominal element spacing) assuming
that the mean vertical arrival angle of 10° is known.

7. CONCLUSIONS

We have introduced a constrained least squares
algorithm for array shape estimation using sources in
unknown locations under a planewave assumption. The
algorithm is demonstrated using both simulation and real
data examples. Performance is analyzed in the absence of
arrival angle errors as a function of the number and distri-
bution of the localizing sources. Performance is also char-
acterized numerically as a function of the number of
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localizing sources, time delay estimation noise, and noise in
vertical arrival angle estimates.
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FIG. 4 Ratio of variance in estimated element positions to dy;
variance as a function of source bearing sector width.
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FIG.6 RMS error in array element position estimates vs. stan-
dard deviation in vertical arrival angles, Gy.(0,/1=09%).
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