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ABSTRACT

A steepest descent gradient algorithm prewhitens the sig-
nal received by a uniform planar array. Previously devel-
oped methods work only on single line arrays. A novel
model facilitates algorithm development by reducing prob-
lem dimensionality associated with exact multi-dimensional
autoregressive (AR) modeling. The discrete source model,
based on a Kronecker product of the received signals be-
tween the vertical and horizontal elements of the array,
agrees exactly with the classical sinusoidal model. The
colored noise source Kronecker product model agrees ap-
proximately with a physical geometric one constructed from
spherical surface harmonics. The algorithm uses a stacked
vector parameterization of the vertical and horizontal AR
parameters and optimizes them over a low order white-
ness functional. Application of the algorithm with MU-
SIC demonstrates enhanced performance in terms of angu-
lar resolution and detection of low SNR sources. The algo-
rithm allows extensibility and solves the general problem of
the three-dimensional volumetric array with arbitrary ge-
ometry.

1. INTRODUCTION

The direction finding methods developed so far [1,2,3] re-
quire that the additive noise be spatially white (uncorre-
lated between sensors)-or that the noise correlation ma-
trix be known to within a constant scale factor [4]. Ex-
perimental and theoretical studies [5, Chapter 10] indicate
that non-isotropic additive ambient sensor noise exists in
the ocean. Ambient noise exhibits a frequency-dependent,
vertical directionality: at low frequencies, distant shipping
causes an increased noise about the horizontal; at high fre-
quencies, wave action imparts an increased noise about the
vertical [6]. A mixed spectral acoustic environment exists,
consisting of discrete frequency sources (tonals) and con-
tinuous frequency sources (colored noise). Direction finders
exhibit high false alarm rates in the presence of spatially
colored ambient noise [7]. Standard methods applied in
practice exhibit serious degradations in terms of bias, angu-
lar resolution, spurious peaks, nondetection of weak sources
and estimate of the number of sources [4].
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A prewhitening filter preprocesses the correlation ma-
trix of the observed signals to remove the effects of col-
ored noise. Prewhitening filters rely on explicit parameter-
izations of the noise correlation matrix. Once estimated,
these parameters construct a filter to preprocess the ob-
served data. After whitening, conventional direction find-
ers obtain source direction of arrival angles with minimal
degradation.

A uniform planar or multiple parallel line array rep-
resents the principal geometry studied in this paper, as
depicted in figure 1. Narrowband signals exist in an az-
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Figure 1: A Large Multiple Parallel Line Sensor Array

imuthally uniform noise field sufficiently far from the array
(r > (N/M —1)d) to allow a planar wavefront approxima-
tion. The N sensor array consists of M lines with N/M sen-
sors per line, inter-sensor spacing d and inter-line spacing s,
where, in general, d # s. A known number of narrowband
stationary zero-mean sources propagate in an underwater
medium with speed ¢ centered at frequency w and wave-
length A such that w = 2xc/A and d = A/2. A stationary
zero-mean random process correlated from sensor to sen-
sor with an arbitrary and unknown covariance models the
additive noise present. The array receives a signal from a

far-field source, arriving from the direction-of-arrival angle

(8, ) Discrete spatial sinusoids and continuous spatial noise
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components (colored noise) compose the signal.

This research exploits the structure of the noise corre-
lation matrix to allow a simple parameterization amenable
to a vector parameter gradient algorithm. Future work ad-
dresses the general problem of the three-dimensional vol-
umetric array with arbitrary geometry by uniformly sam-
pling the acoustic field via array interpolation [8]. Section 2
discusses underwater noises and the mathematical models
describing their correlation properties. Section 3 outlines
the classical and Kronecker product received signal models.
Section 4 formulates the prewhitening algorithm. Section 5
lists several useful properties of the Kronecker product. Sec-
tion 6 employs the MUSIC [2] algorithm to demonstrate the
prewhitening algorithm’s performance. Finally, section 7
explains the simulation results and suggests future areas of
research.

2. SOURCES OF UNDERWATER ACOUSTIC
NOISE

Ambient noise due to natural phenomena and human-causes
exists in the ocean. Two excellent references by Burdic
[5, pages 297-302] and Wenz [9] describe common sources
of acoustic ambient noise in the ocean. Natural physi-
cal sources of ambient noise include thermal agitation and
hydrodynamic sources such as bubbles and surface waves
caused by wind. The sound generated by distant oceanic
traffic in shipping lanes constitutes the principal human
contribution. Biological sources due to fish and ocean mam-
mals also impact the ambient noise levels.

The Cox [6] model computes the correlation coefficients
for both surface wave generated noise and distant shipping
noise. This model describes these coefficients for any sen-
sor array of arbitrary known geometry. When employing
a two or three-dimensional uniform array, the model gen-
erates noise correlation matrices with block-Toeplitz struc-
ture. Cox defines a normalized directional density function
for azimuthally uniform (uniform across ¢) fields F(4,w)
and expands it into spherical harmonics

oo

F(6,w) = ci(w)Pi(cos ) (1)

=0

where c;(-) represents the coefficient for the /-th term in
the expansion, Pi(-) the Legendre polynomial of the first
kind. Cox provides the coefficients, derived by curve-fitting
to ocean acoustic data. The correlation Qmn(d,w,v) (nor-
malized element of noise correlation matrix) between two
sensors m and n separated by distance d with angle rela-
tive to the vertical v at frequency w equals

o

Qrn = Y _ i*ci(w) Picos 7)si(wd/c) (2)

i=0

where (-} represents the I-th order spherical Bessel func-
tion of the first kind and i represents a complex number.

The multi-dimensional AR noise model considered in
this paper appears to best fit [8] the surface noise corre-
lation model suggested by Cox [6]. Similar models fit the
correlation properties of other noise sources.

3. RECEIVED SIGNAL MODEL

Each i-th sinusoid in the acoustic field arrives from arrival
angle (6;,¢:) and has relative power o,. Define the two-
dimensional steering vector for each signal as

df (8i,¢:) = [ eKiP1  kTPs JKTPY | (3)
where the wavevector ki = (w/c)u;, the position vector of
the I-th element pf = [z y 2] for I = 1,2,..., N and the
unit vector u? = [ sinf;cos¢d; siné;singd; cosé,; ]

For ¢ sources, the discrete source model

P= Zcr.' (Pri ® P—-,i) (4)

1=1
where ® represents the Kronecker product and
Pri=dp:(8i,¢:) i (6, 6:) (%)
P_i=d_(6;¢:)d%; (6:¢) (6)

where the vertical and horizontal steering vectors dy,; and
d_.; along the first row and column of sensors in the az-
ray come from the classical model. The Kronecker product
model equals the classical model exactly for the case of sinu-
soidal signals. The principle of pattern multiplication [10,
page 39] validates the use of this model.

For the classical formulation, each steering vector rep-
resents an colamn of the N x ¢ steering matrix A. The total
signal correlation matrix P = ASAY where
S=diag(a'1 g2 - Og )

Single dimensional AR processes effectively model am-
bient noise for the uniform line array case [4,7}. A multi-
dimensional AR process [11, Chapter 15] concisely models
an isotropic noise field when sampled uniformly by a pla-
nar grid of sensors. For simulation comparisons, the multi-
dimensional Levinson algorithm [11, pages 462-3] computes
the AR coeflicients from the Cox generated correlations in
a computationally efficient way. Such a parameterization,
while accurate, when employed in a prewhitening filter suf-
fers from high dimensionality. The feasibility of estimating
O(N) AR coefficients in a M x N/ M array lacks practicality.

Writing a prewhitening algorithm for optimizing a white-
ness functional requires an amenable parameterization for
the inverse noise correlation matrix. Such a model should
agree, at least approximately, with the physical noise model,
provide a block Toeplitz matrix structure and reduce prob-
lem dimensionality far below O(N). The noise correlation
matrix

Q=Q:;®Q-~ (7)
where the M x M and N/M x N/M dimensional Toeplitz
matrices Qt and Q_ contain common power . The
vector autoregressive coefficients a; and a_. parameterize
Q: and Q- via the well-known Gohberg-Semencul for-
mula {12]. For a general Toeplitz correlation matrix the
formula states that

a1
Q7' = S [A1AT - AsAd]. (8)

The article by Cernuschi-Frias [12] contains concise defi-
nitions of the pertinent quantities. This parameterization
reduces problem complexity to order O(M + N/M).
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Since the surface noise model [6] generates purely real
correlations, real AR coefficients provide the necessary pa-
rameterization. This model produces a noise field broadside
to the array, centered at § = 90° in bearing. Cox’s model
for distant shipping or noise sources steered off of broad-
side produce complex correlation coeflicients, necessitating
a complex AR parameterization [7][13, pages 184-6].

4. STACKED PARAMETER GRADIENT
PREWHITENING ALGORITHM

The algorithm estimates the noise correlation matrix Q in
the manner of LeCadre [4] by optimizing a whiteness func-
tional over a low order surface parameterized by

T _ 2 k k k k
Ai=[od af, - Stpr B—1 7 G—p

(9)
at iteration k and p; and p_. denote the respective lengths of
the AR processes. The gradient parameter update equation

A1 = Ax — pGie (10)

requires the computation of the i-th element of the gradient,
where a¥ represents the i-th element of Ax,

Gu() = 2 (11)

fors =0,1,...,p1 + p—. L represents the whiteness func-
tional [4], p the algorithm step size. Figure 2 illustrates a
typical functional surface contour for first order real param-
eterizations in the horizontal and the vertical. The figure
depicts a low order modality of the optimization surface.

5

Figure 2: Typical Whiteness Functional Surface Contour

For algorithm implementation, use equations 9-15 in
conjunction with the detailed procedure of LeCadre [4,7].
At each step in the iteration compute an appropriate step
size via a line search over a range of p of the whiteness func-
tional expressed as a function of the eigenvalues. The range
expression effectively bounds the computed real or complex
coefficients within the unit circle.

5. PROPERTIES OF THE KRONECKER
PRODUCT

Several useful properties of the Kronecker product aid in
algorithm development.

Definition 1 Given the M x M matriz A and the
N/M x N/M matriz B define the N x N Kronecker product
matrizrC = A ® B as

auB e ﬂ]MB
C= : (12)
ay1B ammB
where a;; represents the (i, 7)-th element of matriz A.
Lemma 1 [f A~! and B™! ezist, then
Cl=A"1¢B™! (13)

Lemma 2 IfQ~! = Qt—l ® QZ! and a; and a_. parame-
terize QT'1 and Q! respectively

Q™' 9Qyl

dayi  Oap ®Q- (14)
5Q~ _ i _9Qz
2a = ®a, (15)

for the i-th element.

6. SIMULATION RESULTS

A 3 line array of inter-line spacing s = 0.75 m with 8 sen-
sors/line with inter-sensor spacing d = 1.5 m receives sig-
nals propagated from 2 sinusoidal sources immersed in a
surface generated noise field of SNR 0 dB generated from
the Cox noise model. The far-field sources of temporal fre-
quency 500 Hz impinge on the array from arrival angles
(6 = 70°, ¢ = 20°) and (4 = 110°, ¢ = 60°) and with SNR
(-8.5 dB, -11.1 dB) through a medium with propagation
speed ¢ = 1498 m/s. Figure 3 represents a contour plot
of the two-dimensional MUSIC (2] spectra before whiten-
ing, figure 4 after whitening. MUSIC and the whiteness
functional use a signal subspace dimension of 2, the verti-
cal and horizontal AR order equals 2. Figure 5 depicts the
normalized eigenvalue spectra for the correlation matrix of
the whitened (dashed) and non-whitened (solid) data.

7. CONCLUSIONS

Figure 4 illustrates enhanced performance in terms of an-
gular resolution and detection of low SNR sources. The
whitened response detects the source at
(8 = 110°,¢ = 60°). In figure 5, the whitened eigenval-
ues display a flatter spectrum, as expected. The modulo-8
characteristic of the 3 x 8 array contributes to the choppy
descent of the two plots. Further research on this topic stud-
ies the effects of source number underdetermination, applies
the algorithm to an arbitrary three-dimensional volumetric
array and employs a complex AR coefficient model.
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Figure 3: MUSIC Response without Whitening
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Figure 5: Normalized Eigenvalue Spectra
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