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ABSTRACT

A new speech processing concept for Cochlear
Implant (CI) - systems has been developed. It is based
on robust feature extraction and a neural net classifier:
Feature coefficients, extracted either by relative
spectral perceptual linear predictive technique or
regular Cl-filtering, are classified into ‘auditory
related units ‘. The classifier is based on an adapted
self-organizing Kohonen algorithm which finds
representative clusters in the input feature vector
space. These clusters are closely related to the
statistical distribution of the feature coefficients and
represent phonetic units. Firing neural net output
nodes control the synthesis of a limited ‘stimulus
pattern alphabet’. Each ‘letter’ represents a sub-
phoneme and is linked to a highly distinguishable
complex stimulus pattern. The concept has been
implemented with CINSTIM V2.0. First experimental
results confirm the new CI speech processing
strategy.

1. Introduction

Consider the problem of the huge amount of infor-
mation a cochlear implant (CI) patient has to process
shortly after being implanted with one of the common
CI- systems. Wouldn't it be a good idea to supply the
patient first with a limited ‘alphabet’ of stimulus pat-
terns and increase the number of ‘letters’ step by step
during the rehabilitation process until he will be able
to recognize the full continuous information stream
sufficiently?

CI- systems are based on the principle of coding
acoustical information into electrical stimulus
patterns. Fig.1 illustrates the principle of such a
system: First, the acoustical input signal is
preprocessed. Digitised input speech is analysed by an
appropriate method (filtering, FFT). Then, features
like formant frequencies and related amplitudes are
extracted. Finally, frame by frame the resulting data
are encoded into stimulus parameters in order to
produce stimulus patterns which are consisting of
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Fig.1. General block scheme of a cochlear implant system
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bursts of pulses. The parameter data are transferred to
the implant transcutanieously via RF- modulation.
Finally, the mentioned pulses stimulate the auditory
nerve of the deaf patient in order to provide him some
sort of sound impression.

Existing commercial systems are providing
patterns nearly unlimited in their variety. The same
word spoken twice by one person will never produce
exactly the same pattern sequences. The influence of
different speakers or inadequate acoustical conditions
produces often an unrecognizable stream of
information at the auditory nerve. Especially for the
initial rehabilitation period and for prelingually
deafened patients it seems to be promising to limit the
information to be provided to a relatively small
amount of different stimulation patterns. A limited
number of such patterns, the ‘alphabet’, and their
sense might be learnt by the hearing impaired quickly
and easily. For this purpose we have developed a new
CI- speech processing concept. It is based on neural
net classification [1] and can be combined with the
known Cl-processing methods. This paper describes
the technical idea behind our concept, implementation
advances and first experimental results.

2. Neural net CI speech processing

The concept of neural net CI speech processing
strategy is based on following approaches:

®Input sound (speech) is transformed into sequences
of discrete, distinguishable stimulus patterns.

®FEach pattern represents a group of similar acoustical
parameters (e.g. it represents a phoneme)

®The number of different patterns is limited and may
be increased with the success of the rehabilitation
process.

®Optional, sound may be processed independent of
characteristics of different speakers and robust against
noise.

Fig.2. illustrates CI speech processing when
incorporating the above concept: After pre-
processing, input speech is processed by feature
extraction. Each frame of speech is represented by a
m-dimensional feature vector X,
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Fig.2. Block scheme of neural net CI processing
X={X11; X455 Xk,ir"’Xmi}’ 1=12,..n1<k<m.

For feature extraction we currently employ either
RASTA-PLP [6] or a regular CI filtering
algorithm[7]. RASTA-PLP provides robust, speaker
independent feature coefficients.

The classifier assigns each X, to so called ‘auditory
related units (ARUs)’. It is based on a neural net
algorithm which is able to learn properties of the
relation between acoustical input features and the
ARUs. Artificial neural nets are either working
supervised or unsupervised. In case of supervised
neural networks during the learning process the
connectionist system has to know which nodes of the
output layer have to be activated related to a specific
input pattern. In terms of our classification problem
we would need to know the targets in order to classify
the featares X ;. We could find such targets
empirically or by employing a auditory nerve
stimulation model. Our investigations {2] show that
the supervised method is not very effective to process
speech in CI- systems. In particular, there is no
effective model available to derive the appropriate
training data.

Unsupervised neural nets do not need any external
adjustment to determine the desired input/output
transformation. Because of it’s special property of
effectively creating spatially organized ‘internal
representations’ of various speech features we choose
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the unsupervised Kohonen feature map [3). During
the training process Kohonen'’s algorithm finds
clusters in the input feature vector space. These
clusters are closely related to the statistical
distribution of the input feature vectors and resemble
very closely the topographically organized maps
found in the cortices of more highly developed animal
brains[4].In addition to that output nodes representing
such clusters can be interpreted as phonetic units in
tonotopical maps [5]. Depending on the frame length
tr the ARUs represent words, phonemes or sub-
phonemes (our experiments: tp = 40ms -> sub-
phonemes).

Fig.3 shows the topological structure of the
Kohonen map. During the training process sequences
of feature vectors Z; are presented to the map. For
explanation, the feature vectors Z; are 4- dimensional;

Zl={F li,in,B li,BZi}i= 1,2, . ,k, WL

Components of Z; represent extracted speech features
with F1;,F2; peak frequencies of the first and second
formant, B1;,B2; related bandwidths; i denotes the
frames number. The output layer consists of a 2-
dimensional array. Every input node is connected to
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Fig.3: Structure of the Kohonen map

every output node via the weighted links. During the
training process the weights Wyt are adapted to the
input vectors. At the end of the learning process the
density function of the weights closely represents the
probability density function of the input vectors Z;. In
other words: each weight vectors Oy Tepresents a
cluster found in the feature vector space. After
finishinging training output nodes are labelled. A
label consists of a pointer to the analytical description

of a complex stimulus pattern and denotes a ‘letter’ of
the above mentioned stimulus pattern alphabet’. The
number of ‘letters’ corresponds to number of output
nodes. Sub-alphabets can be derived from maps with
less output nodes if maps are trained in a hierarchical
order [5].

We developed two labelling strategies: 1.- Labels are
assigned to the ARUs arbitrarily. That creates
completely artificial ‘sounds’. This method is only
applicable to preligually deafened patients. 2.- A
regular CI system runs in parallel and produces
reference patterns for comparision. With this methods
we achieve more natural ‘sounds’.

The resulting “alphabet” will be used to encode the
acoustical input information during the following test
steps. When testing the map, the minimal Euclidean
distance between the presented input feature vector Z;
and all nodes represented by their weight vectors Oxy

Oxy={WxyF1-Wiy F2:Wxy BI- W y,B2}

denotes the best matching ARU. The mentioned
Euclidean distance is measure of quantization error
Qeyr- Finally, for individual adaptation the map is fine
tuned by employing Kohonen’s ‘learning vector
quantisation’[3].

The subsequent synthesizer generates stimulus
patterns by processing the labelled ARUs. The
psychophysical implications of this approach are
discussed in [8].

3.IMPLEMENTATION AND EXPERIMENTS
3.1. CINSTIM implementation

The CINSTIM (Cochlear implant Neural net
Simulation and sTIMulation framework [9] is based
on PC, a hierarchically organised graphical user
interface and a COCHLEAR 22 MSP™ Cl-system([7).
The objective is to provide a powerful, block oriented
experimental tool including different feature
extraction algorithms, artificial neural net (ANN)
processing and access to the CI- system in order to
validate the above concept and to conduct patient
tests.Figure 4. illustrates CINSTIMs processing
blocks:Input speech samples are provided by the
TIDIGITS database. The feature extraction block
implements the RASTA-PLP- algorithm [6] and,
optional a MSP filtering algorithm [7].Feature
coefficients are either directly sent to the stimulation
kernel or to the neural net. In the first case the neural
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net will be bypassed to run the stimulation for
reference purposes. Otherwise, the feature
coeflicients are fed to the classifier. Each set of
feature coefficients at the ANN input results in firing
of one of the output nodes (ARUs). Subsequent
dictionary is the first synthesis stage. It consists of a
database with stimulus parameters of all ‘letters’ of
the ‘stimulus pattern alphabet’. ARUs are the
database access keys, output are stimulus parameters.
The definition and creation of the ‘letters’ is done by
employing the off-line stimulation tool. Examples of
different ‘letter’- types are presented in [2]. The
stimulation kernel controls the actual stimulation. The
‘off- line stimulation tool” enables the user to
manipulate off-line stimulations and to develop
distinguishable ‘letters’ of the ‘alphabet’. Individual
stimulus patterns files can be edited, and reloaded to
repeat a test, and to be converted into a unique
dictionary entry.

3.2. Experimental results

Extensive experiments have been conducted in
order to simulate the speech analysis/ classifier
complex. Simulation results [2] validated the
technical concept. After training with the TIDIGITS
database quantization error remained below 5%. First
promising experiments with deaf implanted patients
were achieved with CINSTIM V2.0 [9]. These
experiments concentrated on the definition and test of
distinguishable complex stimulus patterns. We found
[8] that, with training, patients are able to recognise
up to 80% of such artificial patterns.

4.CONCLUSIONS

An alternative concept for speech processing in CI-
systems has been proposed. Computer simulation
results validate the feature extraction and neural net
classifier principle. The new CI speech processing
strategy has been implemented with CINSTIM
V2.0.This software package provides a user friendly
graphical user interface. The implementation is block
oriented. That provides flexibility and the option of
replacing or exchanging particular blocks for later
modifications or extensions. With first successful and
promising patient test we have demonstrated the
possibility of applying artificial neural networks to
cochlear implant speech processing. Further
experiments will be conducted in order to find a
common ‘stimulus pattern alphabet’ for a number of

subjects and to derive sub-alphabets by employing
hierarchically organised Kohonen maps.
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