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ABSTRACT

The accurate electroacoustic characterization of hearing aids
is important for the design, assessment and fitting of these
devices. With the prevalence of modern adaptive processing
strategies (e.g., level-dependent frequency response, multi-
band compression etc.) it has become increasingly impor-
tant to evaluate hearing aids using test stimuli that are rep-
resentative of the signals a hearing aid will be expected to
process (e.g., speech). Nearly all current hearing aid tests
use stationary test signals that can characterize only the
steady-state performance of a hearing aid. Our research
examines the characteristics of automatic signal process-
ing hearing aids with natural-speech input signals that may
cause the hearing aid response to time-vary. We have inves-
tigated a number of linear system identification techniques
that can be used to develop time-varying models of hearing
aids. Using these models, we can begin to characterize per-
formance of hearing aids with real-world signals and explore
speech-based transient distortion measures.

1. INTRODUCTION

A number of measurements, such as maximum power out-
put, frequency response and distortion are typically used
to characterize hearing aids. The frequency response (gain
versus frequency) of a hearing aid is an important mea-
sure of performance because it allows predictions concern-
ing the level of acoustic signal provided for a hearing aid
user. Current test procedures use pure-tone [1] or sta-
tionary, broadband stimuli [2, 3] to measure frequency re-
sponses. While some broadband stimuli have speech-like
characteristics (e.g., long-term average spectrum or crest-
factor), both pure-tone and broadband stimuli lack impor-
tant characteristics found in natural speech (e.g., non-sta-
tionarity). These test signals may, therefore, give results
that do not reflect the performance of an automatic signal
processing hearing aid with a natural speech input signal.
Because the transient performance of an automatic sig-
nal processing hearing aid can be affected by the input sig-
nal it receives, another measurement of importance is dis-
tortion. Most current distortion tests may not give results
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that reflect “real-world” performance because they present
a single test frequency at a time (e.g., total harmonic distor-
tion [1]) or multiple, pure-tone test frequencies (e.g., inter-
modulation distortion) that are very poor approximations
to natural speech. Newer tests using broadband stimuli that
are better approximations to speech have also been devel-
oped [4, 5]. However, these tests use stationary, broadband
test signals which allow only steady-state distortion mea-
surements.

The problem of linear system identification has been
studied extensively in the past (e.g., [6]). Rabiner, Crochiere
and Allen [7] compared least squares analysis (LSA), least-
mean squares adaptation and short-time spectral analysis
methods for finite impulse response (moving average) pa-
rameter estimation and found that the LSA provided the
most robust estimates of system parameters for both white
and band-limited signals across a wide range of signal-to-
noise ratios. Williamson, Cummins and Hecox [8] used the
LSA method for hearing aid modelling. They applied a low-
order MA filter to model the hearing aid and plotted three-
dimensional spectrograms showing time, frequency and am-
plitude. Our research extends this work by applying more
powerful MA system identification algorithms. We have
also applied ARMA system identification techniques which
can give equivalent results to MA models with much lower
order models.

This paper describes research done to develop tests that
use natural-speech input stimuli for the electroacoustic char-
acterization of hearing aids. Linear system identification
techniques are used to develop time-varying models of hear-
ing aids and track characteristics over time. Five system
identification techniques are compared to determine which
provides the best performance for this application. These
techniques provide the means to make speech-based fre-
quency response and distortion measurements (Figure 1).

2. PROBLEM FORMULATION

2.1. System identification

The problem of system identification can be stated as fol-
lows: given the output from a device {y(n),n =0... N —
1} that was produced when an input signal {z(n),n =
0...N — 1} was applied to the device, generate a model
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Figure 1: Speech-based hearing aid measurements

that will produce (with minimal error) an estimate §(n) of
the output. The problem is invariably complicated by noise
and distortion that are always present to some degree in the
output signal y(n). Although it is possible to derive non-
linear models, we will restrict this discussion to linear mod-
els. That is, models where §(n) is a linear combination of
samples of z(n) (moving average or MA models), samples of
z(n) and y(n) or samples of z(n) and §(n) (auto-regressive
moving average or ARMA models).

For linear modelling, §(n) is computed using one of the
following methods:
(1) moving average (MA)

J-1
i(n) = Y asa(n-J) 1)
(ii) equation-error ARMA
J=1 K-1
i) = D az(n—5)+ ) ba(n-k) (2
7=0 k=1

(iii) output-error ARMA

J=1

K-1
gn) = Y ais(n—j)+ Y bi(n—k)  (3)
k=1

=0
For the MA formulation, define
ht = [aoa1 cee aJ_]]
and
z'(n) = [z(n)z(n ~1)...2(n - J 4+ 1)]
For the equation-error ARMA formulation, define
ht = [aoal cee aj._lb] bz e bK_.1]
and
z'(n) = [z(n)z(n —1)...2(n = J + 1)
y(n —Ny(n —2)...y(n - K +1)]

We use the least squares method to solve this problem:
minimize E with respect to the model coefficients (h) where

E=Y (y(n) - §(n))’ (4)

n=0

It can be shown that for the MA and equation-error formu-
lations, the solution is

h=R'r,. (5)

where
N-1

R.. = Y z(n)z(n) (6)

n=0
and
N-1

ry: =Y y(n)z(n) ()

n=0

The output-error ARMA formulation is much more difficult
to solve because the output signal estimate §(n) depends
on delayed estimates §(n — k); specialized techniques are
required [9].

Both the MA and equation-error ARMA solutions are
biased by output noise and distortion. However, both these
methods require less computation and are much easier to
implement than the output-error ARMA method. Also,
ARMA methods can give equivalent results to MA mod-
els with much lower orders when modelling systems (like
hearing aids) that are inherently ARMA.

2.2. Hearing aid modelling

We want to extract the “underlying” linear response of a
hearing aid that may be distorting and/or have relatively
high-levels of output noise. To accomplish this goal, some
assumptions regarding the characteristics of automatic sig-
nal processing hearing aids must be made:

1. Hearing aid output noise is uncorrelated with the in-
put or output signal.

2. A distorting hearing aid has a slowly-varying “under-
lying” linear response.

3. On average, the linear response of a hearing aid will
dominate its response.

Two sets of test signals (input/output), one clean and
one distorted, were used for all analysis. These signals were
collected using our experimental hearing aid test system
[10]. The clean-signal set is the nonsense word ‘asil’ put
through a low-distortion hearing aid with the input and
output signals sampled at a rate of 25kHz using 16-bit res-
olution. The distorted-signal set is the nonsense word ‘abil’
put through a distorting hearing aid and sampled as above.

The linear system identification methods are compared
using mean-square output error (MSOE), plots of the mean
frequency response (computed over all analysis blocks) and
informal listening tests. If two methods extract the same
“underlying” linear system for a given set of input and out-
put signals, their MSOE should be roughly equivalent. We
can also expect that the average frequency response for a
hearing aid will be relatively smooth, if a model represents
the “underlying” linear system. Perhaps the most reliable
tests of all are listening tests. These tests allow the de-
tection of incorrect frequency shaping (caused by biased
coeflicients), background noise (caused by rapidly changing
filter coefficients) and other anomolies that are difficult to
detect by other means.
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[ Signal || MA Sol’n Method |

Block RLS
clean 2.14 x 10> | 4.02 x 10*
distorted || 2.00 x 10" | 5.84 x 10°

Table 1: Mean-square output error for clean and distorted
test-signal sets

3. IMPLEMENTATION AND RESULTS

3.1. MA models

The time-varying analysis necessary to develop MA mod-
els of hearing aids may be implemented on a block-wise or
sample-by-sample basis. Both strategies were implemented
to compare their performance.

In a block-wise analysis the LSA matrix equations (Eqn.
5) are not, in general, Toeplitz. Thus, the Levinson method
cannot be used. Instead, Marple’s efficient least-squares
method [11] was implemented. A “slow” (O(N?)) recursive
least squares (RLS) method [12] with exponential weighting
(A = 0.9985, 10% memory at 512 sample delay) was also
implemented. (The slow method was used because it was
easy to extend to higher dimensions for ARMA modelling.)

100**-order filters were used for both test cases. The
block-wise analysis was done every 1024 samples on non-
overlappling blocks. For the RLS method, the frequency re-
sponse was computed from filter coeflicients that are “samn-
pled” every 1024 points. All frequency responses were com-
puted using 512-point complex FFTs. The MSOE for both
methods with each signal set is shown in Table 1. The mean
frequency responses are shown in Figures 2 and 3.

The RLS method gives lower MSOE. This is a result of
sample-by-sample coefficient updating which allows better
tracking of rapid changes. The frequency responses show
that both methods give similar (i.e., slightly rough) fre-
quency responses for clean signal. However, both meth-
ods fail for the distorted signal and give quite different fre-
quency responses.

Listening tests reveal that both methods give excellent
performance for the clean signal. The residual is primarily
noise with some low-level signal. The output of the RLS
model has some “zipper noise” caused by rapidly changing
filter coeflicients. The block-wise method fails completely
on the distorted signal; the output signal from the model
has large clicks and sounds very different from hearing aid
output. The RLS model output sounds better than the
block-wise model. However, it has high-levels of background
zipper noise.

The memory parameter of the RLS filter (A) was var-
ied to determine the effect it had on performance. Larger
values of A reduced the level of zipper noise somewhat and
improved the frequency response, but even A = 1 did not
give satisfactory performance.

3.2. ARMA Models

Three ARMA system identification methods were imple-
mented and compared. We first implemented a block-wise
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Figure 2: Average frequency responses with clean test-
signal set for RLS moving average (rls.ma), block-wise MA
(blk-ma), ARMA RLS output-error (rls_oe), ARMA RLS
equation-error (rls_ee) and block-wise ARMA equation-
error (blk_ee)

|  Signal || ARMA Sol’'n Method ]
Block RLS eqn. err | RLS out. err
clean 4.64 x 10* 4.66 % 10° 3.67 x 10°
distorted || 1.72 x 10° 8.20 x 10° 6.36 x 10°

Table 2: Mean-square output error for clean and distorted
test-signal sets

equation-error method where the autocorrelation matrix
(Eqn. 6) was computed recursively on Hanning-windowed,
non-overlapping blocks. The coefficients are directly com-
puted via Cholesky decomposition. At the start of a block,
the algorithm uses input and output signal samples from
the end of the previous block to initialize the new filter
(i.e., the signal is used to interpolate coefficients at block
boundaries).

A RLS equation-error formulation was implemented us-
ing a two-dimensional version of the “slow” RLS method
that was used above for MA modelling. Finally, an output-
error ARMA formulation was implemented using a three-
dimensional version of the “slow” RLS method that realizes
the filtered-error version of this algorithm [9, 13].

16*"_order filters were used for all methods. All fre-
quency responses computed as above. The block-wise anal-
ysis was done every 1024 samples; the RLS filters used
A = 0.9985 (as above). The MSOE for all three meth-
ods with each signal set is shown in Table 2. The mean
frequency response graphs are shown in Figures 2 and 3.

Both of the RLS methods give lower (and similar) MSOE
values for both signals. This is a result of their better track-
ing capability because they update the model coefficients
each sample. The RLS output-error formulation gives the
smallest MSOE. This is probably because coefficients are
not biased by noise and distortion. The small increase in
MSOE for RLS meéthods between the clean- and distorted-
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Figure 3: Average frequency responses with distorted test-
signal set for RLS moving average (rls_ma), block-wise MA
(blk-ma), ARMA RLS output-error (rls-oe), ARMA RLS
equation-error (rlsee) and block-wise ARMA equation-
error (blk_ee)

test signals implies that they are probably not extracting
the “underlying” linear system very well.

All of the frequency responses are similar for both test-
signal sets. In listening tests for the clean signal, all meth-
ods performed very well. The block-wise method has slightly
more signal in the residual; the outputs from both RLS
models have higher-levels of background zipper noise caused
by rapidly changing model coefficients.

Listening tests on the distorted test-signal set revealed
that both RLS model outputs sound distorted. The value of
A chosen allows them to update their coefficients so rapidly
that they compute a piecewise linear approximation to the
non-linear characteristics of the hearing aid. Setting A =1
did not improve performance very much—the model output
still sounded distorted. Both RLS methods also have higher
levels of background (zipper) noise and a noticable high-
frequency emphasis.

The block-wise equation-error model output sounds like
a less-distorted version of hearing aid output signal. There
are some artifacts present in the model output signal (e.g.,
a few“thumping” transients and low-level “swishy” back-
ground noise). However, this method performs better than
either of the RLS methods.

4. CONCLUSIONS

All methods work well on low-noise, undistorted signals.
However, there are large differences in performance for the
distorted-test signal set. Both MA methods examined here
fail when used with distorted signals. Overall, ARMA meth-
ods give much better performance than MA methods.

Both ARMA RLS schemes track too well and are unable
to extract the underlying linear system because they update
their coefficients each sample. Increasing the memory of the
RLS filters by setting A = 1 improved their performance
only slightly.

The block-wise equation error ARMA method gives the

best peformance of all methods examined here. Because it
estimates the auto-correlation matrix over an entire block,
it can, to a certain extent, “average out” the effects of dis-
tortion and extract the underlying linear system. Because
coeflicients are updated only once each block, there is no
background zipper noise introduced. However, instanta-
nous updating of coefficients at block boundaries can some-
times cause transients. Using the signal to interpolate par-
tially solves this, but some transients are still introduced.
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