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ABSTRACT

A task independent spoken Language Identification (LID)
system which uses phonological and lexical models to dis-
tinguish languages is described in this paper. We demon-
strate that the performance of a LID system which is based
only on acoustic models can be improved by incorporat-
ing higher level linguistic knowledge in the form of trigram
phonemotactics and lexical matching. We also present the
performance of our LID system for four languages (English,
German, Mandarin and Spanish).

1. INTRODUCTION:

In the future, LID systems will be an integral part of tele-
phone and speech input computer networks which provide
services in many languages. A LID system can be used to
pre-sort the callers into the language they speak, so that
the required service will be provided in an appropriate lan-
guage. Examples of these services include, travel informa-
tion, emergency assistance, language interpretation, tele-
phone information and stock quotations.

Language identification has been the subject of research for
several years. Initially, systems were developed to screen
radio transmissions and telephone conversations for the in-
telligence community. The performance of these systems
was not good enough to use them for on-line service appli-

cations, which requires above 90 % correct identification of

the language that is spoken.

The languages of the world differ from one another along
many dimensions which have been codified as linguistic cat-
egories. These include, phoneme inventory, phoneme se-
quences, syllable structure, prosodics, lexical words and
grammar. Therefore, we hypothesize that an LID system
which exploits these linguistic categories will have the nec-
essary discriminative power to provide good performance.

Humans, especially linguists, have a special ability to pick
out some distinguishing features of a language from a brief
exposure to it and hence able to identify a language. Con-
ceptually, our approach to LID problem is similar to how
an expert in linguistics identifies a language. We would like
to distinguish languages using (1) phone/phoneme inven-
tory, (2) phonemotactics, (3) syllable structure, (4) lexical
and (5) prosodic differences. In the baseline LID system
that was described in [8], we only made use of differences
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in phoneme inventory and phonemotactics to identify lan-
guages. However, in the LID system that is described here,
we improve the performance of our baseline system in par-
ticular, in the case of English and Spanish by making use of
the lexical differences in these two languages. In addition,
we have extended the capability of our baseline system to
identify four languages.

Some early systems [3]-[5] identified languages by us-
ing broad phonetic categories and spectral characteristics
around the vowel classes. In the past three years, a num-
ber of researchers [6, 7, 8] have been developing systems
which first recognize phonemes and then use a phonemo-
tactic model of phoneme sequences allowed within each lan-
guage to identify the spoken language. Our baseline system
described in {8] uses a continuous density, second order er-
godic variable duration hidden Markov models to achieve
the phoneme recognition based on tri-phonemes and tri-
gram phonemotactic models. However, the other recent
LID systems [7, 6], use context independent Markov mod-
els for phoneme recognition with bigram phonemotactic
models. For languages with Consonant-Vowel-Consonant
(CVC) syllable structure, the trigram models do a very good
job of modeling the most frequent words, which are usually
mono-syllabic and hence, should help in discriminating lan-
guages more efficiently than bigram phonemotactic models.

In the following sections, we briefly describe our baseline
LID system and describe the lexical access module that is
interfaced with the base line system. We present the results
and finally, conclude and discuss our future goals.

2. DESCRIPTION OF THE BASE LINE LID
SYSTEM:

The block diagram of the LID system is as shown in Figure
1. In the following subsections, a brief description of each
of the component of the system in Figure 1 is given.

2.1. Phoneme recognition system

The phoneme recognition system is based on “a high accu-
racy phoneme recognition system” developed by A. Ljolje
[1). This phoneme recognizer is based on a second or-
der ergodic Continuous Variable Duration Hidden Markov
Model (CVDHMM). The ergodic HMM has one state per
phoneme. However, each phoneme is modeled by a time
sequence of three probability distribution functions (pdfs)
with each pdf representing the beginning, the middle and
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Figure 1. The block diagram of the baseline LID system

the end of a phoneme, respectively. This structure is equiv-
alent to a three state left-to-right HM phoneme model. The
duration of each phoneme is modeled by a four parameter
gamma distribution function. The four parameters are: (1)
the shortest allowed phoneme duration (the gamma distri-
bution shift), (2) the mean duration, (3) the variance of the
duration, and (4) the maximum allowed duration for the
phoneme.

2.1.1. Training phoneme models:

Different training procedures were adopted to train the
phoneme recognition system depending on the type of tran-
scription and the alignment of speech waveform with the
transcription is available. (1) When the word labels and
the alignment of these labels with the speech waveform is
available, the phonemically segmented data was generated
automatically by obtaining the phonemic transcription and
the estimated duration for each phoneme using a Text-To-
Speech (TTS) system and stretching these durations lin-
early to cover the word duration. The phonemically seg-
mented data thus obtained is used to initially train the er-
godic HMM models. Models are re-trained using a segmen-
tal k-means algorithm iteratively until the models converge.
{2) When the time aligned phonemic transcription of the
speech data is available, the initial models are trained using
this data and the models are re-trained using the segmen-
tal k-means algorithm iteratively until the models converge.
{3) When the sentence level transcription and segmentation
is available, the phonemic level transcription and segmen-
tation is obtained automatically as described in methad 1
except that the phoneme durations are stretched linearly to
fit the whole sentence. The models are trained iteratively
as described in method 1 by using the segmented data so
obtained. The phonemic boundaries obtained by this pro-
cedure are less reliable than the ones obtained from the
hand labels; however, the system converges to stable mod-
els. This method is similar to a flat start k-means training
procedure.

2.2. Phonemotactics

For the transition probabilities of a second order ergodic
HMM, a trigram phonemotactic model is used. This pro-
vides more discriminative power than the phoneme inven-
tory and bigram probabilities since the trigram phonemo-
tactic capture the allowable phoneme sequence in any given
language very efficiently. For example, the allowable or not
allowable three phoneme sequences in English, Spanish and
Mandarin are tabulated in Table 1 with trigram probability

values. From this table, it is clear that some of the three
phoneme sequences allowed in one language is not allowed
in other languages.  Usually, the transition probabilities

lang b/oUfm(boun) xof (hoy)j axe (ajo) | /st/@n(shan)/ts/>N (zong)

5

English | 1.75x107° | 0.0 0.0 0.0 0.0
Spanish 0.0 Ls4x1075p.33x1074] 0.0 0.0
Mandarin] 0.0 0.0 0.0 5.86x10~4 | 6.05x1074

Table 1. Allowable or not allowable trigram phoneme se-
quences in different languages.

(phonemotactics) are trained using large amounts of labeled
speech. However, in the absence of enough transcribed
speech to train the transition probabilities, they can be ap-
proximated using a large amounts of text and a grapheme
to phoneme converter. Therefore, in our LID system, we
have trained phonemotactic models using large amounts of
text. Since our goal is to develop a task independent LID
system, the phonemotactic models are trained using about
10 million words per language which are obtained from dif-
ferent sources such as news wire services, newspapers and
transcribed speech. The trigram phonemotactic models are
trained by converting text to phoneme strings and then by
estimating the trigram probability values by applying the
following equation.

PI‘(SalSl,Sg) = /\3f(53|s1, 52) + Azf(s:;lSz) + Alf(SQ) (1)

Where, the weights Az, A2 and A; are set to 1, 0 and 0,
respectively, s; is the phoneme symbol i and f() is the fre-
quency of occurrence. In the next section, we describe the
third block of Figure 1, namely the Bayesian classifier which
is used to classify an incoming speech signal into one of the
languages that the LID system is trained.

2.3. Bayesian classifier

For language identification, the subsystems (block 1 and
2 in Figure 1) for each language are run in parallel for
a given speech signal. The language subsystem with the
highest log likelihood is chosen as the language of the in-
put speech signal. The log likelihood is computed on a per
frame basis to avoid the bias toward short utterances. In
addition, since the phoneme set of each language contains
different number of phonemes (for example, the phoneme
set of English has 42 phonemes where as Mandarin and
Spanish have 41 and 27 phonemes, respectively), the com-
putation of the log likelihood on a frame basis help in
achieving the normalization with respect to the number of
phonemes. The log likelihood is computed using the Baye’s
rule P(z|L;) = P(z|8:)P(B:|Li) where the Ps are condi-
tional probabilities, z is the input speech signal, 3; is the
phoneme sequence and L; is the phonemotactic model of
the language 1.

We interfaced a lexical access module with the phoneme
recognition system to further improve the performance of
our baseline system. The block diagram of the modified
LID system is as shown in figure 2. In the next section,
we briefly describe the lexical access block of this figure.
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Figure 2. The block diagram of the modified LID system
3. LEXICAL ACCESS

The lexical access module in the above figure is based on
the “Weighted rational transduction and their application
to human language processing” [9]. This method uses the
concepts of weighted language, transduction and finite state
automata from algebraic automata theory to decode cas-
cades in speech and language processing. Lexical access
can be considered as a transduction cascade since the lex-
ical access problem can be decomposed into a transduc-
tion, “D” from phoneme sequences to word sequences and
a weighted language, “M”, which specifies the langunage
model. Each of these can be represented as a finite-state
automaton. The automaton for the phoneme sequence to
word sequence transduction “D” is defined in terms of word
models. A word model is a transducer from a subsequence
of phoneme labels to a specific word. To each subsequence
of phonemes, a likelihood is assigned indicating that it pro-
duced the specified word. Hence, different paths through a
word model correspond to different phonetic realizations of
the word which has an advantage of incorporating alternate
pronunciations. The language model “M” which is gener-
ally an N-gram model can be considered as a weighted finite
state acceptor. Combining the automata, “D” and “M” re-
sults in an automaton which assigns a probability to each
word sequence and the highest probability path that the au-
tomaton estimates gives the most likely word sequence for a
given utterance. Thus, a best sequence of words which cor-
respond to a given utterance can be obtained. For language
identification, the subsystems (block 1, 2 and 3 in Figure
2) for each language are run in parallel for a given speech
signal similar to the base line system described above. The
language subsystem with the highest log likelihood is chosen
as the language of the input speech signal.

3.1. Word and language model

The transducer “D” (lexicon or word model) and accep-
tor “M” (language model) were built using about 10,000
words per language which were obtained from the OGI
multi-language transcribed speech data base. This con-
tained about 2000 unique words and hence, the size of the
lexicon is 2000. The bigram language model was trained
using the approach described in [10].

4. EXPERIMENTAL DETAILS AND RESULTS

The German language subsystem is added to the base line
system described above. The four language (English, Ger-
man, Mandarin and Spanish) ID system was trained and
tested using the multi-language spontaneous speech data

base collected by Oregon Graduate Institute [2]. The train-
ing and test data consists of about 80 and 18 speakers,
respectively, per language with length of speech utterance
equal to about 50 secs per speaker. The acoustic models
of English and Spanish phoneme recognition systems were
trained using the method 1 and, the Mandarin and Ger-
man recognition systems were trained using method 2 as
described in section 2.1.1..

After training the four langunage identification system, it
was tested using the test data. The system was also tested
using short intervals of speech of 10 secs long. This test set
consisted of 72 chunks of 10 secs long utterances per lan-
guage. These were obtained by segmenting the 50 secs long
utterance from each speaker of the test data into 4 segments
as specified by NIST (which evaluates the performance of
LID systems developed at various sites). We obtained an
average of 88 % LID rate on four languages on the 50 secs
utterances and 82 % on the 10 secs utterances. In table 4.,
the results for four languages including language pair iden-
tification rates are tabulated. From this table we can see
that the language pair identification rate is the lowest in
the case of English and Spanish.

Average four language identification is: 88 %
for ~50 sec speech and 82 % for 10 sec speech.
Len | Eng vs Spa, Ger|Man vs Eng, Ger|Spa vs Eng, Ger|{Ger vs Eng, Spa

and Man and Spa and Man
~50s 84 % 94 % 94 % 80 %
10s| 78% 81% 86% 75 %

Eng { Man |Eng {Spa ([Man| Spa | Eng |Ger |Spa | Ger {Ger |Man
Man{ Eng {Spa {Eng|Spa {Man|Ger (Eng [Ger | Spa {Man | Ger
~50sl100 7% 100% 86‘71994 94%| 94 % 1007185%1100% 90% 95% |100%

10s D7% |98% (80%93%(83% |93% | 96% |75%|98% | T7%[92% | 96%

Table 2. Four language and language pair identification re-
sults.

In order to improve the performance of the identification
rate for English and Spanish, a lexical access module was
added to our LID system as described in section 3.. The
identification results that were obtained using lexical access
with bigram grammar is tabulated in table 4.. From this
table, we can see that the language pair result in the case of
English and Spanish improved when the lexical differences
in these two language were used. This difference is not
large, but improved phonemic modeling will make the word
recognition improve, and retraining of the phonemic models
based on phonetic hand labels is planned.

Length English vs Spanish Spanish vs English
50 secs 91 % 96 %
10secs Not Available Not Available

Table 3. English and Spanish language identification results
with lexical access.
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5. CONCLUSIONS

A four langunage identification system based on phonological
and lexical models was described. LID results for four lan-
guages were reported. From the comparison of our previous
three language ID results (91 % correct) with the current
four language results (88 % correct), we can see that the
drop in identification rate when a new language is added is
not very significant. We demonstrated that the LID rate in
the case of English and Spanish can be improved by making
use of the lexical differences in these two languages. This
implies that the discriminatory power of the LID system
can be improved by adding higher level linguistic knowl-
edge. Future work warrants addition of lexical access mod-
ule in the case of other two languages and thus improve the
average LID rate.
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