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ABSTRACT

A language identification technique using multiple sin-
gle-language phoneme recognizers followed by n-gram lan-
guage models yielded top performance at the March 1994
NIST language identification evaluation. Since the NIST
evaluation, work has been aimed at further improving
performance by using the acoustic likelihoods emitted
from gender-dependent phoneme recognizers to weight the
phonotactic likelihoods output from gender-dependent lan-
guage models. We have investigated the effect of restricting
processing to the most highly discriminating n-grams, and
we have also added explicit duration modeling at the phono-
tactic level. On the OGI Multi-language Telephone Speech
Corpus, accuracy on an 11-language, closed-set, language
identification task has risen to 89% on 45-s utterances and
79% on 10-s utterances. Two-language classification ac-
curacy is 98% and 95% for the 45-s and 10-s utterances,
respectively. Finally, we have started to apply these same
techniques to the problem of dialect identification.

1. INTRODUCTION

This paper describes ongoing work at M.I.T. Lincoln Lab-
oratory to research and develop high performance language
identification (LID) and dialect identification (DID) sys-
tems. After conducting a number of studies over the past
few years in which we compared the performance of a va-
riety of different LID approaches [12, 13] using the Ore-
gon Graduate Institute (OGI) Multi-language Telephone
Speech Corpus [9] (described in Section 2), we have more
recently focused our efforts on what we call the PRLM-P
system, which stands for Phoneme Recognition followed by
Language Modeling performed in Parallel. The baseline
version of PRLM-P, which was introduced last year [13]
and is reviewed in Section 3, comprises a bank of single-
language phoneme recognizers followed by phonotactically
motivated, n-gram language models. In Section 4, the use
of gender-dependent phoneme recognizers and n-gram lan-
guage models is discussed. Their use improves performance
significantly at the cost of increased computational com-
plexity. Next, in Section 5, a scheme for explicitly modeling
phoneme duration in the language modeling is described.
Section 6 reports on an unsuccessful attempt to base the
LID decision on the presence or absence of a few, highly
discriminating phonemes. Qur first foray into dialect iden-
tification is the subject of Section 7. Finally, some conclu-
sions are drawn and plans for future work are proposed in
Section 8.

*THIS WORK WAS SPONSORED BY THE DEPART-
MENT OF THE AIR FORCE. THE VIEWS EXPRESSED ARE
THOSE OF THE AUTHORS AND DO NOT REFLECT THE
OFFICIAL POLICY OR POSITION OF THE U.S. GOVERN-
MENT.
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Although not discussed directly in the present paper, ap-
plications for LID and DID systems fall into two main cat-
egories: pre-processing for machine understanding systems
and pre-processing for human listeners. For example, an
LID system might be used to select which elements of a
bank of real-time, language-dependent, speech recognizers
should be activated. As speech recognition systems prolif-
erate at locations frequented by speakers of many languages
(e-g. hotel lobbies, international airports), the LID system
would be used as a pre-processor to determine which speech
recognition models should be loaded and run. Alternatively,
LID might be used to route an incoming telephone call to
a human switchboard operator fluent in the corresponding
language. As reported in a study by Muthusamy [10], it
can be difficult for humans to identify languages in which
they are not fluent. Furthermore, Muthusamy reports anec-
dotely that delays on the order of several minutes can be in-
curred as human “front-ends” in commercial speech transla-
tion services attempt to determine the language of a speech
utterance [8].

2. CORPUS

The Oregon Graduate Institute Multi-language Telephone
Speech Corpus [9] has been used at a wide variety of sites to
evaluate LID systems. The training segment of the corpus
as used in the experiments described herein contains speech
collected from at least 70 speakers for each of 11 languages.
The speech, which was collected over long-distance tele-
phone channels, comprises responses to a series of prompts
with each speaker speaking for 1-2 minutes. Testing is car-
ried out according to the U.S. National Institute of Stan-
dards and Technology (NIST) March 1994 specification:!

%45-s” utterance testing: LID is performed on a set
of “stories” that are roughly 45 seconds in duration.
These utterances are the responses to the prompt ask-
ing the speaker to speak about any topic of his choice.

#10-s” utterance testing: LID is performed on a set of
10-second cuts from the same utterances used in “45-s”
testing.

3. BASELINE PRLM-P LID SYSTEM

Our baseline LID system is a parallel bank of phoneme rec-
ognizers followed by n-gram phonotactic language models
(PRLM-P) [13]. Discussed below are the basic strategy of
the algorithm and its performance.

3.1. Algorithm

Figure 1 shows a block diagram of the baseline PRLM-P
system as it was used in the March 1994 NIST evaluation.
HMM-based phoneme recognizers were trained using a pho-
netically labeled subset of the OGI training speech in each

'Contact Dr. Alvin F. Martin at NIST for details.
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11L Eng. vs. L Lovs. L
| System 15-s [ 10-s [7I5-s T 10-s | 43-s [ 10-s
Baseline PRLM-P 79. 69.9 TO6. T 79447948 T 1.8
PRLM-P + Gender 82. 2.6 19691949 [ 9601923
PRLM-P + Gender + Duration | 8 8.9 [ 93751960 [97.9 ] 949
{standard deviation) 2 2 1 1 1

Table 1. PRLM-P performance results using March 1994 NIST guidelines. “11L" refers to 11-alternative, forced-choice classifica-
tion, “Eng. vs. L" refers to an average of the ten two-alternative, forced-choice experiments with English and one other language,
and "L vs. L'" refers to an average of the 55 two-alternative, forced-choice experiments using each pair of languages. Each row
of results is described in the text. The final row shows the standard deviations assuming a binomial distribution.
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Figure 1. Baseline PRLM-P block diagram.

of six languages: English, German, Hindi, Japanese, Man-
darin, and Spanish. Each phoneme recognizer takes as in-
put a stream of mel-weighted cepstra and delta cepstra com-
puted from the incoming digitized speech and produces a
stream of phoneme symbols as output. Interpolated n-gram
language models [4] designed to capture the phonotactic
statistics of each language are created by passing the train-
ing speech for each of the 11 OGI languages through each
of the six front-end phoneme recognizers and recording the
unigram and bigram counts. During recognition, the test
utterances are passed through each of the phoneme recog-
nizers, after which the likelihoods of the resulting phoneme
sequences are calculated according to each of the language
models. The final likelihood scores for each language for
each utterance are calculated as the average of the individ-
ual log likelihoods emanating from the corresponding lan-
guage models associated with each channel. Using multiple
channels broadens our overall front-end phoneme coverage,
making our composite of front-ends more language indepen-
dent. It also provides multiple streams of phones that are
somewhat independent of each other.

Note that though we can only build front-end phoneme
recognizers in languages for which we have orthographically
or phonetically transcribed speech, we can use the PRLM-
P system to perform LID even on languages for which no
orthographically or phonetically transcribed speech is avail-
able. Our system is different from those of Hazen [3] and
Tucker {11] in that we use parallel, language-dependent
front-end recognizers rather than a single front-end recog-
nizer. We differ from Lamel [6] in that we use primarily

phonotactic scores, rather than acoustic scores, for making
the LID decision.

3.2. Performance

The first row of Table 1 shows the results of evaluating the
PRLM-P system according to the March 1994 NIST guide-
lines. This was our first pass through the evaluation data,
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Figure 2. Using fewer than six front-ends.

so there was no possibility of tuning the system to specific
speakers or messages. For all such closed-set, forced-choice
LID experiments, the Lincoln PRLM-P system was the top
perfo[rr]ning system in the official March 1994 NIST evalua-
tion [8].

Further analysis of our March 1994 results was performed
to determine the effect of reducing the number of front-end
phoneme recognizers. The results on the eleven language
classification task are shown in Figure 2. The left panel
shows that reducing the number of channels generally re-
duces performance more quickly for the 10-s utterances than
the 45-s utterances. The right panel shows that using only
one channel, no matter which one it is, greatly reduces per-
formance.

4. USING GENDER-DEPENDENT
CHANNELS

The use of gender-dependent acoustic models 1s a well-
known technique for improving speech recognition perfor-
mance. For LID, we hoped that gender-dependent phoneme
recognizers would produce a more reliable tokenization of
the input speech relative to their gender-independent coun-
terparts; therefore, n-gram analysis might prove more effec-
tive.

The general idea of employing gender-dependent chan-
nels for LID is to make a soft determination regarding the
gender of the speaker of a message and then to use the
confidence of that determination to weight the phonotactic
evidence from gender-dependent channels. A block diagram
is shown in Figure 3. During training, three phoneme rec-
ognizers per front-end language are trained: one from male
speech, one from female speech, and one from combined
male and female speech. Next, for each language to be
identified, three interpolated n-gram language models are
trained, one for each of the front-ends. The language mod-
els associated with the male phoneme recognizer are trained
only on male messages, the female language models only on
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female messages, and the combined models on both male
and female messages.

During recognition, an unknown message z is processed
by all three front-ends. The acoustic likelihood scores ema-
nating from the male front-end and from the female front-
end are used to compute the a posteriori probability that
the message is male as

p(z|Am)

Primalele) = SR T 2R

(1)

where p(z|Aar) is the likelihood of the best state sequence
given the male HMMs, A, and p(z|AF) is the likelihood of
the best state sequence given the female HMMs, Ar. Ob-
serving empirically that the cutoff between male and female
messages is not absolutely distinct and does not always oc-
cur exactly at Pr{malelz) = 0.5, Pr(male|z) is used to
calculate three weights:

W Pr(male|z)—K
= 1—-K
M 0
K —Pr(male|x
Wr = pi¢

if Pr(malejz) > K (2)
otherwise

if Pr(inale|z) < A (3)

0 otherwise
_ 1-Wu if Pr(male|z) > K
Wer = { 1-Wpg if Prgmalefzg <k W

where Wy is the weight for the male channel, Wz is the
weight for the female channel, Wgy is the weight for the
gender-independent channel, and K is a constant set empir-
1cally during training (typically ranging from 0.30 to 0.70).
The weight functions are shown graphically in Figure 4.
The W’s are used to weight the phonotactic language model
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Figure)5. Approach to duration tagging (as suggested by Mis-
tretta).

scores as follows:
p(zll) = Waup(zAM) + Wep(z|AT) + Warp(z|AFT), (5)

where AM is the interpolated n-gram language model
trained by passing male language ! speech through the male
phoneme recognizer, Af is the interpolated n-gram language
model trained by passing female language I speech through

the female phoneme recognizer, and AP? is the interpolated
n-gram language model trained by passing both male and
female language ! speech through the gender-independent
phoneme recognizer.?

The second row of results in Table 1 shows the perfor-
mance of a PRLM-P system with gender dependent chan-
nels, This new system has 16 channels: three each for
English, German, Japanese, Mandarin, and Spanish, and
one for Hindi, as there was insufficient female speech to
train gender-dependent front-ends for Hindi. As shown in
the table, use of gender-dependent front-ends together with
gender-independent front-ends results in an improvement in
LID performance.

5. DURATION MODELING

On advice from Bill Mistretta of Lockheed-Sanders {7], we
have begun to use phoneme duration information output
from the front-end phoneme recognizers explicitly in the
language ID process. Our version of the Mistretta approach
for using duration information is shown in Figure 5. The
training data for all languages are passed through each of
the front-end phoneme recognizers. A histogram of dura-
tions for each phoneme emitted from each recognizer is com-
piled and the average duration determined. A -L suffix is
appended to all phonemes having duration longer than the
average duration for that phoneme, and a -$ suffix is ap-
pended to all phonemes having duration shorter than the
average duration. This modified sequence of phoneme sym-
bols is then used in place of the original sequence for train-
ing the interpolated language models. During recognition,

2We could certainly use a simpler algorithm for making the
gender ID decision, but the phoneme recognizer acoustic likeki-
hoods are already being calculated as part of the phone recogni-
tion process; hence, we get them for free in our system.
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the same procedure is applied to the output symbols from
the phoneme recognizer using the means determined dur-
ing training as thresholds. As shown in the third row of
Table 1, this simple technique for modeling duration com-
bined with the use of gender-dependent front-ends further
improves LID performance.

6. KEYPHONES

It has been suggested (e.g. [2], [1]) that performance of
LID systems might be improved by focusing on the “best”
sounds, where a sound is “good” for the purposes of LID
if it can both be reliably identified and its expected rate
of occurrence is different among the languages to be iden-
tified. Presumably, the “bad” sounds, i.e. those that either
cannot be identified reliably or that do not occur with dif-
ferent rates in different languages, only confuse the LID
process. In the context of our PRLM system, we call

such “good” sounds “keyphones.” Keyphones are those
phonemes whose statistics are found to be most dissimi-
lar from one language to the next, as measured by passing
training data in each language through a front-end phoneme
recognizer. Specifically, we use a keyphone goodness mea-
sure related to the difference in the phoneme’s measured
probability of occurrence from language to language nor-
malized by the standard deviation of those measurements.

Using a PRLM-P system with a single English front-end,
Vietnamese vs. Korean LID was performed. These two lan-
guages were chosen because they form one of the most diffi-
cult language pairs. Results on 10-s test utterances showed
that filtering out all but the five best keyphones resulted
in LID performance equivalent to using all 42 phonemes.
Similar results were obtained for English vs. German LID
(another difficult pair). Though it was possible to reduce
by an order of magnitude the number of symbols scored by
the language model without eroding performance, we were
never able to improve performance by ignoring poorly dis-
criminating phonemes.

7. DIALECT IDENTIFICATION

More recently, attention has focused on applying LID tech-
niques to the problem of dialect identification. Using the
“dialect region” labels of the TIMIT database, we at-
tempted to train an LID system to recognize the difference
between “New England” and “Southern” American English.
As all TIMIT speech is phonetically labeled, it seemed most
appropriate to to use a parallel phoneme recognition (PPR)
LID system as first proposed for LID by Lamel [5, 13]. In
this approach, a phoneme recognizer is created for each class
(i.e. each dialect region in this case) during training. During
recognition, the acoustic likelihoods along the most likely
phoneme paths are calculated and compared. Using such a
system, we were able to classify correctly the dialect 71% of
the time using test utterances that were eight sentences in
duration. It 1s important to note that these tests on read
sentences really demonstrate accent ID rather than dialect
ID, because the speakers were not free to choose the words
they spoke. As such, the results may understate the po-
tential performance of PPR (or other LID system) on the
dialect ID problem.

8. CONCLUSIONS

This paper has reported on the progress that has been made
during the past year at improving the Lincoln LID sys-
tem. Starting with a system that demonstrated top perfor-
mance at a government-sponsored evaluation, a number of

3Others have called such units “monophones,” meaning a
phone that is specific to one language vs. “polyphones,” meaning
a phone that is present in many languages. The term “mono-
phone,” however, is already widely associated with context-
independent subword units.
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enhancements have been made, including the use of gender-
dependent channels and explicit duration modeling. Basing
the LID decision only on the statistics of the phonemes best
able to discriminate between languages did not improve per-
formance. Finally, we ran a simple dialect identification ex-
periment using a system that had been developed for LID.

We still await the availability of larger, standardized,
multi-language speech corpora. Our hope is that these
new corpora will allow us to train and test systems that
model language dependencies more accurately than is pos-
sible with our current phoneme recognizers and interpolated
n-gram language models.
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