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ABSTRACT

We have developed and trained a Fuzzy Neural Network
(FNN) to detect individual breaths using information from
multiple independent noninvasive ventilation sensors. We
derive input features from simultaneous recordings from
impedance and inductance plethysmographs, and a
pneumotachometer while healthy adults performed several
different combinations of ventilation and motion. We first
tested our FNN using membership functions, rules and
consequent sets derived using a heuristic approach. Using
all features, on 4 subjects we found that the average rate of
combined false-positive and false-negative detections was
5.1%. When we trained our FNN using a gradient descent
algorithm, the average rate of combined false-positive and
false-negative detections was reduced to 2.6%.

1. INTRODUCTION

Accurate noninvasive breath detection is desirable in a wide
variety of clinical and research applications. Several
noninvasive sensing technologies have been developed.
However artifacts resulting from subject motion, airway
obstruction and electrocardiographic signals can make it
difficult to detect breaths. False detection can have severe
consequences. For example, in infant apnea monitors, if true
breaths are not detected a false alarm will sound. This is
extremely stressful to caretakers. Alternatively, false breath
detections during periods without breathing can inhibit an
alarm during a life threatening event, which can be fatal.

1.1. Noninvasive Ventilation Measurements

Impedance and inductance-based instrumentation are
commonly used to obtain a noninvasive measure of
ventilation. Impedance plethysmographs sense changes in
transthoracic impedance between a pair of ribcage electrodes
[1]. Inductance plethysmographs measure changes in the
self-inductance of wires encircling the abdomen and ribcage,
which approximate the changes in abdomen and ribcage
cross-sectional area, respectively [2]. Pneumotachometers
measure airflow, and can be used as a “gold standard” to
determine sensor and algorithm performance (fig. 1).

3491

— pneumotachometer
(PT)

Ribca
elecn'o%ee
{RC 2)
Ribcage
inductiveg belt . Abdomen
(RCL) inductive beit
(ABD L)

Fig. 1. Ventilation measurements.

During normal breathing, signals from impedance and
inductance-based sensing technologies are qualitatively
similar, and simple breath-detection algorithms can
accurately detect breathing. However, movements unrelated
to breathing or episodes of airway obstruction can appear as
breathing (fig. 2). For example, ribcage impedance signals
measured during normal breathing and airway obstruction
look similar, but the pneumotachometer confirms that there
is no air flow during airway obstruction. Therefore, breath-
detection algorithms based on measurements from a single
sensor are likely to be inaccurate.
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Fig. 2. Recordings of normal breathing, arm movement
without breathing, and simulated airway obstruction. PT:

pneumotachometer; ABD L: abdomen inductive belt; RC
L: ribcage inductive belt; RC Z: ribcage electrodes.

We hypothesize that algorithms based on simultaneous
recordings from multiple independent sensors should be
able to detect breathing more accurately than algorithms
based on the output of a single sensor. We have observed
that on healthy adult subjects, ribcage impedance, ribcage
inductance and abdomen inductance signals appear
qualitatively similar during normal breathing, but differ
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during abnormal breathing and motion [3], which we
attribute to both recording locations and sensing
technologies. To test our hypothesis, we have developed
breath detection algorithms based on fuzzy logic
inferencing [4], which provides a convenient method to
combine information from multiple sensing technologies.
The remainder of this paper describes our FNN architecture,
training algorithm and performance.

2. FUZZY NEURAL NETWORKS (FNN)

Fuzzy inferencing provides a convenient method for using
existing knowledge to solve a complex nonlinear system.
However, linguistic rules do not necessarily translate to an
optimal set of fuzzy rules and membership functions.
Adjusting fuzzy system parameters to obtain improved
performance can be difficult.

Neural networks (NN) can be trained to perform a nonlinear
mapping from input to output space. However, NN are
essentially “an unstructured computational black box” [5],
since there is no way to embed existing knowledge into a
NN, and it is impossible to interpret the trained system.

Horikawa et al. [6] have proposed a FNN architecture,
which is a NN that simulates the fuzzy inferencing process.
The fuzzy membership functions and rules are determined
by connection weights, which allows us to embed existing
knowledge into a FNN, and extract knowledge from the
trained network.

2.1. FNN Architecture

Figure 3 shows our FNN architecture, which is essentially
a Type I network proposed by Horikawa et al. [6], with
slight modification. The main differences follow. First, we
use a single Gaussian function for each membership
function, which can reduce the number of first layer
connection weights and nodes by as much as a factor two.
Although this may reduce the generality of our membership
functions, it simplifies training and reduces the possibility
of finding a local rather than global solution. Second, our
network input and bias terms are all multiplied by
connection weights before the first processing layer, which
reduces the number of required layers by one. Finally, we
have designed our FNN inferencing and training algorithm
for an arbitrary number of input features, each with an
arbitrary number of membership functions.

Our network input consists of I features (x7,...,x7). Each
feature defines a universe of discourse, over which we
evaluate the membership in an arbitrary number of fuzzy
sets. For example, in figure 3 we assume that n, m and p

fuzzy sets are defined in the universe of discourse for x7, x;
and xJ, respectively. Each set is defined by a Gaussian
distribution with variance and mean which are related to the
connection weights, ofj and pf;

Fig. 3. Fuzzy neural network architecture

The output of the FNN, out, is computed from the input
features as follows:

y; = 8(X;0;+1;) (D
where g(x)=e ™’ )
X =[x -ones(l,n) ... x; -ones(L, p)]' 3)

where ones(1,g) is row vector with ¢ elements, all equal to
one,
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where V;  is the entry in the ith row and &th column of V,
which contains the index of y which is the ith partial
product of z,
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2.2. FNN Training

During training, we adjust the antecedent and consequent
parameters w, ¢ and u to minimize the output error, E:

E=(d-0)’ (8)

S

where d is the desired output and o is the actual FNN
output in eq. (7). By changing the connection weights, we
effectively change the membership functions and the
consequent of each rule. To change each of these parameters,
we perform a gradient descent search.

We adjust the consequent values, wg, as follows:
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We adjust the “spread” of each antecedent membership
function, oy, as follows:
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By increasing oj, we decrease the spread of the Gaussian
function g(Xjoj + Lj).

We adjust the mean of the membership sets by changing y;:

JE JE do
A ] — e —_—
==, 3, T3, o, (18)
do 1 do
where —_— = 19)
u; X; do;

Since the values of p; must to be negative to obtain a
positive mean value for the Gaussian function in eq. (2), by
decreasing i, we increase the mean of g(X joj + pj). To
always have a membership function with a mean of zero, we
do not update the mean for the first membership function
for each feature. To always have a membership function

with a mean of one, we always update the mean of the last
membership function, say uy to a value of —oy.

3. BREATH DETECTION ALGORITHM

Four presumed healthy adult male subjects performed a 15-
min experimental protocol which included shallow, normal
and deep breathing, arm and leg movements with and
without breathing, simulated airway obstruction, yawns,
coughs and snores. We simultaneously recorded from a
ribcage impedance plethysmograph, ribcage and abdomen
inductance plethysmographs and a Fleisch type
pneumotachometer (fig. 1). We measured ribcage impedance
between Signa II electrodes (Burdick Corp., Milton, WI)
placed on opposite midaxillary lines at the level of the
nipples. We measured inductance from inductive belts
(Ambulatory Monitoring Inc., Ardsley, NY) wrapped
around the thorax, such that the ribcage and abdomen belts
were centered on the nipples and umbilicus, respectively.
We filtered all signals using two-pole bandpass filters with
comer frequencies at 0.03 Hz and 10 Hz, and sampled data
at 30 Hz using a Macintosh II Computer, National
Instruments NB-MIO-16H ADC and LabVIEW software.
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3.1. Feature Extraction

We performed template matching to determine possible
breathing intervals and computed cross-correlation between
sensors during each interval. For each subject, we manually
defined a template as all of the samples from one cycle of a
normal breath, using an inductance signal which we derived
from a linear combination of abdomen and ribcage
inductance sensors [2].

We then calculated normalized correlation coefficients
between the template and segments of the inductance signal.
Sequential segments were all the same length as the
template and started every 10 samples. We used the
template-matching output to define several contiguous
intervals, where each interval was between two positive-
going zero-crossings of the template-matching correlation.
Therefore, each interval contained one possible breath.

For every interval, we found the maximal value of the
template-matching correlation (L_Match) and we calculated
the normalized cross-correlation between ribcage impedance
and ribcage inductance (L_Z), and between ribcage
inductance and abdomen inductance (L_L).

3.2. Initial “Expert System”

We directly use L_Match, L_Z and L_L as features for our
FNN. We partition each input dimension using 3
overlapping membership functions with all ¢ij=5 and
uig=0, piz=-2.5 and pi3=-5 for i=1, 2 and 3,
corresponding to fuzzy sets Low, Medium and High with
means at 0, 0.5 and 1, respectively. We used our hypothesis
to generate initial rules of the form: IF L_Match is High
and L_Z is High and L_L is high, THEN output is 1,
where 0 indicates no breath and 1 indicates breath.

4. RESULTS

Using the pneumotachometer signals, we performed manual
scoring to determine if each interval was a breath or not.
We compared the output from our fuzzy breath-detection
algorithm with our manual scoring to determine the
percentage of false-positive (FP) and false-negative (FN)
detection. A FP indicates that our algorithm determined a
breath had occurred when a breath had not occurred, while a
FN indicates that our algorithm determined a breath had not
occurred when a breath had occurred.

We tested our algorithm using individual features, and then
using all features. We determined algorithm performance
before and after training. Table I summarizes the results of
using our FNN on 4 subjects, on a total of 944 intervals.

TABLE I. FNN PERFORMANCE (AVE. + 8.D.)

Input Initial Trained Improvement
Feature % (FP+FN) % (FP+FN) (%)
L_Match 6.8+3.2 6.9+2.2 -7.4+18.5
LZ 4.1+09 4.5+1.5 -8.3+16.6
LL 7.3+4.4 3.8+1.0 42.3+16.3
All 5.132.4 2.6+0.4 42.9+17.3

5. DISCUSSION

Our breath detection algorithm using a FNN performed well
under a variety of conditions, including motion artifact and
simulated airway obstruction. The lowest combined
percentage of false positive and false negative detections
was obtained using the fully connected and trained FNN.
We need to test more subjects, including neonates and
infants before stronger conclusions can be made.

Our algorithm may be improved in several aspects. First, we
could perform additional data acquisition and preprocessing
to derive new inputs which may be useful, including the
output from adaptive template matching, spectral analysis
and other sensors. We could also implement adaptive
membership functions and weighting, and improve the
defuzzification stage by adding more classes to represent
different types of breathing.

ACKNOWLEDGMENT

We would like to thank Adrianis Djohan for his
technical support and Burdick Corporation (Milton, WI)
for their funding. Kevin Cohen was supported by a
graduate fellowship from the Whitaker Foundation.

REFERENCES

{11 AAMI, “Apnea monitoring by means of thoracic
impedance pneumography,” Assoc. Adv. Med. Instrum.,
Arlington, VA, TIR No. 4, 1989.

[2] Cohn, M. A,, A. S. V. Rao, M. Broudy, S. Birch, H. Watson,
N. Atkins, B. Davis, F. D. Stott and M. A. Sackner, “The
respiratory inductive plethysmograph: a new non-invasive
monitor of respiration,” Bull. Europ. Physiopath. Resp., vol.
18, pp. 643-658, 1982.

[3] Cohen, K. P., J. G. Webster, J. Northern, Y. H. Hu and W. J.
Tompkins, “Breath detection using fuzzy sets and sensor
fusion,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., pp.
1067-1068, 1994.

[4] Zadeh, L. A., “Fuzzy sets,” Information and Control, vol.
8, pp. 338-353, 1965.

[5] Kosko, B., Neural networks and fuzzy systems, Simon &
Schuster, Englewood Cliffs, NJ, 1992.

[6] Horikawa, S., T. Furuhashi, Y. Uchikawa, “On fuzzy
modeling using fuzzy neural networks with the back-
propagation algorithm,” IEEE Trans. Neural Networks, Vol. 3,
pp. 801-806, 1992.

3494



