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ABSTRACT

This paper studies the mechanism for classifi-
cation of Feedforward Neural Networks from the
geometric viewpoints. It is pointed out that the
MLPNs realize hyperplance divisions in the pattern
space, and the FLN realize hypercurved divisions.
We give a form of Generalized Function Link Nets
(GFLN), and discuss the application of a special
GFLN to recognition of radar targets, and give sev-

eral experimental results.

1. INTRODUCTION

Multilayer Percetron Network (MLPN) is a
kind of feedforward network. For 3—LPN, it is
disclosed that the first hidden layer realizes hyper-
plane divisions in pattern space; the second hidden
layer makes logic “AND” computation among out-
puts of the first hidden layer , and effect space divi-
sions on the divided pattern space; the third hidden
layer (output layer) conducts logic “OR” computa-
tion among outputs of the second hidden layer, i.
e. , makes the same sorts of hyperplanes cluster
[1l.

As is shown in Fig. 1, the ith node for the first
hidden layer in 3—LPN receives total input (called
linear affine function)[2];

z, = 2W5j1j+0‘=WfX ey

i=1
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Where W, = [W 1, W 5, W a6, ;X = [21,3,,
n.’z_,ljf

Assume that the nonlinear transfer function in
the first hidden layer is step — function, then the
corresponding cutput is[2]:

(1 z; >0
y.-=f(z.»>=i 0 =0 (2
—1 z;<0

When z; = 0, W;is called the normal vector. The
distance between the hyperplane corresponding to
(1) and the origin is defined as |z, |/[|W | .

If we define a hypersphere S(z4,7) in pattern
space R* [2]:

8(zg,r) = {z/llz — z,ll <7,y
z.z, € R*; »r € R} 3
Assume that z, is the origin in B* , let z;, = 0 in
(1), a hyperplane H Py through the origin is ob-
tained, as is shown in Fig. 2.

For any pattern vector X , let the hyperplane
orthogonal to it be H{ Py then the angle § between X
and W is[2];

8 = cos™ #THXX“ 0<o<180) (D)
Obviously, 0<{6<{90", then z; > 0 corresponds to
the plus aspect H P3 of the HPy 3 90 << o< 1807,
then z; < 0 corresponds to the minus aspect H Py of
the HPy . From the above analyses, the trained
weights for the first layer in MLPN decide on the
space direction for the hyperplane. As the training
goes on, the hyperplanes will constantly change the
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direction. If the units in the first hidden layer are
large enough, the linear regions divided will become
unlimited.

These hyperplanes divisions are no utility to
those irregular pattern distributions which need
many many hidden nodes and much training time
to gain stationary hyperplanes. Sometimes it is very
‘difficult to separate out certain pattern from the
pattern space, i. e. , the trained network doesn’ t
converge. So we need look for other hyperspace di-
visions such as hypersphere, hyperellipsoid . hyper-
paraboloid, etc. As is shown in Fig. 3, these hy-
percurved divisions are suited to those irregular pat-
tern distributions which are usual situation. So the
studies of the hypercurved division networks are

more significant.

2. GENERALIZED FLNs

2. 1. Hypercurved Divisions and FLNs

In order to attain those hypercurved divisions,
the method is to produce all kinds of nonlinear in-
put terms in the input units of the networks. They
form the nonlinear affine functions for inputs to the
first hidden layer, which are tranformed by the I/0
function for the units in the first hidden layer to
produce all kinds of hypercurved divisions.

Assume that the nonlinear affine function re-
ceivbed by the sth unit in the first hidden layer is:
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Where p.g are the high — order number; f,(.),
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tions. We call the networks composing of them as
Generalized Function Link Nets(GFLN).

Here, weselectg =0, f1 () =f,(.) = e =
F4(.) = 1to produce the special FLN as shown in

-+, £ (. ) are the nonlinear transform func-

Fig. 4 to conduct the experiment about the recog-

nition of radar targets.

2.2. RLS—BP Algorithm

We use the fast Recursive Least Square Back-
propagation learning algorithm (RLS—BP) to train
the weights of the FLN. As is shown in Fig. 4, We
define the weighted erroneous cost function{ 2]

J(n) = 2;.--‘ Zez(t)

t‘l k=1

- %2»—'2[@@ —n®F  ®

t=1 k=1

N
1) = DWW P @z, Wz, 2, (D)

i=1
Where &,(t), 4,(t) , and y,(¢) are the error, the
desited and actual output signal of the kth node in
the output layer, Ais the forgotten factor used as
weighted square errors.

By taking the partial derivative of J(#) W.r.

t. W, (a) and setting aw(g)) = (. We can obtain

recursive least square updating formulas of the link
weight vectors as follows[ 23[31[47][5]:

P(z — 1)X(n)
A+ XT@PG— DX@)

K(n) = (8)

P(s) = —;—[P (n — 1) — K@XT@P & — 1]

C)
W,(3) =W,z — 1)+ K®)[d,(») —
XT@W, — DA< M) (10)

J@ =wGa—D+5 LS ao
k=1
— XTW, (a — D an

Obviously s we can see that the RLS —BP algorithm
obtains the accurate solutions of the link weight
vectors at each time, and the updating doesn’t

need any external parameters, it is superior to the



LMS—BP algorithm.

3. EXPERIMENTAL RESULTS

We use one —dimensional cross image datum
of the five kinds of airplanes (Planel, Plane2,
Plane3, Planed and Plane5) as the experimental
datum to be classified. Assume the orientation of
the airplanes’head to be 0", the one —dimensional
cross images are imaged from the model datum in
the range of 0° ~ 100" (the dimension for each vec-
tor is 30) where 30 training saunplés are selected
every 3' (Plane5 every 0. 5 ). The remainder test-
ing samples for Planel, Plane2, Plane3, Plane4
and Plane5 are 138, 150, 113, 162 and 18, re-
spectively. Fig. 5 shows the testing samples distri-
bution for the Plane2.

We use the 30 X 5 training samples to train the
link weights in the network so that the erroneous
weighted cost functions in the output layer descend
to 10; . After the link weights in the network are
obtained , we use the 14 testing samples to get the
rate of recognition: 96. 4%, 98. 7%, 97.6%, 99.
7%, 98. 5% for the five kinds of planes. Fig. 6
gives the confidence curve of recognition for
Planel.
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Fig. 3 Two Dimensional Curved Division Fig. 4 Generalized Function Link Net

Fig. 5 Testing Sample Distribution for Plape2 Fig. 6 <Confidence Curve for Planel
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