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ABSTRACT

A convolution neural network (CNN) was used for
classification of masses and normal tissue on mammo-
grams. A generalized CNN was developed that uses
multiple images derived from a single region of interest
(ROI) as input. CNN input images were obtained from
the ROIs using (i) averaging and subsampling; and
(it) texture feature extraction methods on smaller sub-
regions inside the ROL. In (ii), features computed over
different sub-regions were arranged as texture-images,
and subsequently used as inputs to the CNN. Results
indicate that using texture-images improves classifica-
tion accuracy.

1. INTRODUCTION

Computer-aided diagnosis of breast cancer is poten-
tially useful for reducing the number of lesions missed
by radiologists at a reasonable cost. Masses on mam-
mograms are good indicators of breast cancer. A num-
ber of researchers have attempted to detect and clas-
sify them using computer-aided methods [1]. In this
study, we investigated classification of regions of inter-
est (ROI) on mammograms either as mass or normal
tissue using a convolution neural network (CNN).

A CNN was previously used in detection of lung
nodules and microcalcifications with some success [2].
In the previous application, the CNN input was a sub-
sampled version of the ROI itself. In this paper, we
generalized the CNN to have multiple image inputs,
and investigated using several images derived from a
single ROI as the inputs. The images were derived
from the ROI by employing various feature extraction
techniques [3, 4] localized on different sub-regions.

2. THE CONVOLUTION NEURAL
NETWORK

A CNN is a backpropagation neural network. The dif-
ference between a CNN and an ordinary backpropaga-
tion neural network (BPN) applied to image classifi-
cation is that a CNN operates on images, as opposed
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Figure 1: Basic CNN architecture

to extracted image features. In this respect, a CNN
is similar to the neocognitron of Fukushima [5]. How-
ever, unlike the neocognitron, the CNN learning pro-
cess is very similar to the BPN learning process, t.e.,
all groups (or planes) in all layers learn at the same
time using the backpropagation algorithm.

The basic structure of a CNN is shown in Fig. 1,
which depicts a four-layer CNN with two input images,
three image groups in the first hidden layer, two groups
in the second hidden layer, and a single real-valued
output. The image propagates from the input to the
output by means of convolution with trainable weight
kernels.

2.1. Forward Propagation

Let H; 4 denote the g'" image group at layer {, and
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let there be N(!) such groups. The image propaga-
tion from the input layer (I = 1) to the output layer
(I = L) proceeds as follows. The image H;, (I > 2) is
obtained by applying a pointwise sigmoid nonlinearity
to an intermediate image [; ¢,

1
1+ exp(—1I14(i1,12))’

g=1,...,N(l).
(1)

The intermediate image [;; is equal to the sum of
the images obtained from the convolution of Hj_j 4
at layer [ — 1 with trainable kernel weights wy_y 4 4.
More precisely,

HI,g(il) 22) =

N(l-1)
I{yg: Z Hl—l,g’**wl-l,g,g') (2)

g'=0

where ** denotes 2-dimensional convolution.

The spatial width S, (I — 1) of the weight kernel
wi—1,9,4+ defines the receptive field for the layer I. The
spatial width Sy (!) of an image at layer I is defined in
terms of the image width at layer I — 1 as

Sg(l) = Sg(l—1) = Sy(I—1) + 1. (3)

Consequently, the image width decreases as the layer
number increases. The width of the receptive field of a
given pixel thus increases as the layer number increases.
Definition (3) also avoids edge effects in convolution.
The spatial width of the image at the output layer (I =
L) is 1, which means that CNN outputs, defined as
O(g) := Hy 4(0,0), are real numbers.

2.2. Backpropagation

Similar to BPN, CNN learns through backpropagation.
For each training image p (or each training image set p
if the input layer has more than one image), one defines
a desired-output, O((f)(g), where ¢ = 1,...,N(L) de-
notes the output node number. At each training epoch,
training images are applied to the CNN and the actual
CNN outputs ng)(g) are computed using (1) and (2).
The cumulative CNN output error at training epoch ¢
is defined as

1 p=P N(L)
E=33 3 (0P@-0P@7  ©
p=1 g=1

where P is the total number of training samples. The
update for a specific weight is proportional to the par-
tial derivative of the cumulative CNN output error with
respect to that weight, and the constant of proportion-
ality is called the learning rate. It can be shown that
the computation of the partial derivative can be carried
out as a backpropagation process [6].

3. TEXTURE AND TEXTURE-IMAGES

In this paper, we concentrate on texture features ex-
tracted from gray level difference statistics (GLDS) vec-
tor [3], and from spatial gray level dependence (SGLD)
matrix [4].

3.1. GLDS Features

GLDS features roughly measure the coarseness of the
texture elements in an image. The GLDS vector pg(k)
for a given image H(¢, j) is computed as follows. First,
a displacement vector d = (d;, d2) is chosen. Then, a
difference image is computed as Hq(i,5) = |H(4,7) —
H(i 4 dy,j + d2)|. The k** entry of the vector py is
defined as the probability of occurrence of the pixel
value k in the difference image Hy(3, 5).

If the image texture is coarse, and the length of the
vector d is small compared to the texture element size,
then the pixels separated by d will usually have similar
pixel values. This implies that the elements of GLDS
vector will be concentrated around 0. Conversely, if
the length of the vector d is comparable to the texture
element size, then the elements of the GLDS vector will
be distributed more evenly. One can extract features
from the GLDS vector by computing some measure of
the distribution of its elements.

Since the image matrix is discrete, the displacement
vector used in feature calculation is usually chosen to
have a phase of § = 0°, 45°, 90°, or 135°. In this
study, we used the average of features obtained at 8 =
45° and 135°, i.e., we averaged the texture features
obtained at d = (dp,dp) and d = (dp,—dp). In the
following discussions, we refer to this average as the
feature obtained at a texture distance of dg.

In this paper, we used four GLDS texture fea-
tures, namely contrast (CON), angular second moment
(ASM), entropy (G-ENT) and mean (MEAN), whose
definitions can be found in [3].

3.2. SGLD Features

SGLD features were previously shown to be useful in
distinguishing mass ROIs from normal tissue [7]. To
compute the SGLD matrix for an image H(¢, j), a dis-
placement vector d = (di, d>) is defined. The (k;, kz)‘h
element of the SGLD matrix Py is defined as the joint
probability that gray levels k; and k; occur at a dis-
tance of (di,dz) in H(3, j).

In this paper, we used three SGLD features, namely
correlation (COR), difference entropy (DIF_ENT) and
entropy (S-ENT), whose definitions can be found in [4].
Similar to the calculation of GLDS fetures, we averaged
the features obtained at § = 45° and 135°.
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3.3. Texture Computation and Texture-Images

Within a selected ROI, there might be several sub-
regions showing different texture statistics. For ex-
ample, part of an ROI may contain an actual mass,
whereas the rest of the ROI may contain normal breast
tissue. If the texture is computed for the entire ROI,
the computation result will be an average of the texture
features for a mass and for a nonmass region.

One can characterize these feature differences by
computing the features in different sub-regions inside
the ROI. In this study, we moved the center of the
sub-region on a rectangular grid over the ROI, and
considered each computed feature as the pixel value
of a texture-image at that grid location. The texture-
images thus obtained were then input to a CNN for
classification.

4. RESULTS

4.1. The Data Set

Our data set consisted of ROI’s of 256 x 256 pixels
extracted from screen-film mammograms digitized at a
pixel size of 100um. ROI’s were divided equally and
randomly into training and test groups. Each group
contained 84 mass ROI’s which range from obvious to
subtle, and 252 normal ROI’s which range from fatty
to dense glandular tissue.

4.2. Results with subsampled images

Since the computational cost of inputting a 256 x 256
ROI into a CNN is prohibitive, we reduced the image
size by averaging adjacent pixels and subsampling. The
resulting 32 x 32 or 16 x 16 image matrices were used as
inputs to a three-layer CNN. We investigated the effect
of varying the CNN weight kernel size S, (1), and the
number of image groups in the hidden layer N(2). The
CNN performance criterion that we used was the area
under the Receiver Operating Characterictics (ROC)
curve, A,. The results are summarized in Table 1.

Kernel size | Number of groups | Training A; | Test A,
8 4 0.82 0.81
10 4 0.85 0.81
12 4 0.87 0.82
10 3 0.87 0.83
10 6 0.85 0.82
10 8 0.83 0.81

Table 1.a. CNN classification performance with averaged
and subsampled images of 16 x 16 pixels.

Kernel size | Number of groups | Training A. | Test A.
11 4 0.81 0.80
16 4 0.84 0.80
20 4 0.84 0.83
23 4 0.84 0.82
20 3 0.84 0.82
20 6 0.84 0.82
20 8 0.84 0.82

Table 1.b. CNN classification performance with averaged
and subsampled images of 32 x 32 pixels.

4.3. Results with GLDS features

The results of the previous subsection indicate that
there is not a significant performance difference (i) be-
tween 16 x 16 and 32 x 32 input images; and (i) among
CNN architectures with different values of N(2) and
Sw(1). Therefore, we chose to fix these variables while
we studied the effect of the texture feature in this sub-
section.

All the CNNs in this subsection had two 16 x 16 in-
put images, N(2) = 3, and Sy (1) = 10. The first input
image was a 16 x 16 averaged-subsampled image that
was also used in the previous subsection. The second
input image was a 16 x 16 texture-image obtained using
one of four GLDS features, CON, ASM, G_LENT and
MEAN. We varied the texture distance and determined
that the best performance is obtained at a texture dis-
tance of dy = 4. Results with this texture distance are
summarized in Table 2.

ASM | CON | GLENT | MEAN
Training A, | 0.87 | 0.91 0.91 0.90
Test A, 0.82 0.82 0.85 0.86

Table 2. CNN classification performance with the averaged
and subsampled image and the GLDS texture-image.

4.4, Results with SGLD features

As in the previous subsection, the CNNs in this sub-
section had two 16 x 16 input images, N(2) = 3, and
Sw(1) = 10. The first input image was an averaged-
subsampled image, and the second input image was a
texture-image obtained using one of three SGLD fea-
tures, COR, DIF_ENT and S_LENT. We varied the tex-
ture distance and determined that the best performance
is obtained at a texture distance of dg = 16. Results
are summarized in Table 3.
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COR | DIF_ENT | S ENT
Training A, | 0.84 0.86 0.86
Test A, 0.84 0.84 0.84

Table 3. CNN classification performance with the averaged
and subsampled image and the SGLD texture-image.

4.5. Results with GLDS and SGLD features

In the previous two subsections, the CNN architecture
was kept fixed as we studied the effect of the texture
feature and distance variables for GLDS and SGLD fea-
tures. In this subsection, we chose one GLDS and one
SGLD feature, and studied the effect of the CNN ar-
chitecture as in Section 4.1, but in this case three input
images were used instead of a single input image. The
first input image was the 16 x 16 averaged-subsampled
image. The second image was a GLDS MEAN texture-
image at do = 4, and the third was an SGLD COR
texture-image at dy = 16. We investigated the effect of
varying N(2), and S, (1). Results are summarized in
Table 4.

Kernel size | Number of groups | Training A, | Test A,
8 3 0.90 0.84
10 3 0.90 0.87
12 3 0.91 0.86
10 4 0.89 0.87
10 6 0.89 0.87
10 8 0.91 0.87

Table 4. CNN classification performance with three input
images derived from an ROI. The first image is the aver-
aged and subsampled image, the second image is the GLDS
MEAN texture-image at do = 4, the third image is the
SGLD COR texture-image at do = 16.

5. DISCUSSION AND CONCLUSION

Our results indicate that a CNN can effectively be used
for image classification, and that the use of texture-
images as CNN input improves classification results.
Considering rows with the same N (2) and Sy, (1) values
in Tables 1 and 4, test A, values in Table 4 are 0.04 to
0.06 higher than their counterparts in Table 1.

One has to study all “reasonable” combinations of
CNN architectures and texture feature variables in or-
der to optimize the classification accuracy. However,
since CNN training is computationally very intensive,
this would take an inordinate amount of time. In-
stead, we attempted to find the “best” combination
of features, texture distance, and CNN architecture in
two stages, within the constraint of computation time.

First, in Sections 4.3 and 4.4, we determined which
features and texture distances yield better classifica-
tion results using a single CNN architecture. Then, in
Section 4.5, we varied the CNN architecture while the
features and texture distances were fixed. Clearly, this
results in a “suboptimal” combination, which, never-
theless, produced satisfactory classification results. It
may be possible to improve our results by using CNNs
that employ more than three input images, more than a
single hidden layer, or more than a single output node.
Improved CNN results may also be achieved using dif-
ferent types of CNN input images. Our results, al-
though “suboptimal”, demonstrate the viability of our
approach.
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