MODEL-CATALOG COMPRESSION FOR RADAR TARGET RECOGNITION

Batuhan Ulug and Stanley C. Ahalt

Department of Electrical Engineering
The Ohio State University
Columbus, OH 43210, USA

ABSTRACT

In many model-based Automatic Target Recognition (ATR)
systems the size of the model catalog can be a critical factor
in determining the viability of the system. In this paper we
examine an ATR system which uses synthetic High Range
Resolution (HRR) Radar data to determine how classifi-
cation performance is affected by the compression of the
HRR model catalog. For this purpose the data is prepro-
cessed, clustered and classified using Nearest Neighbor and
Radial Basis Function (RBF) classifiers. The effect of com-
pression on classification performance is examined through
simulations for both of these classification schemes. For the
data in question we show that significant (100:1 or greater)
compression can be achieved with little degradation in clas-
sification performance.

1. INTRODUCTION

Modern ATR systems typically have to cope with challeng-
ing scenario variations, such as target orientation, atmo-
spheric conditions, and occlusion by terrain or clutter. Fur-
thermore, many ATR systems are being designed to employ
high dimensional data which became available with the ad-
vent of high-resolution sensors. Both of these factors result
in the use of large target databases which stress storage
and computational capabilities. This is true especially in
mobile ATR applications where real-time operation is re-
quired with only limited computational resources. There-
fore, a compression of the target database without severe
degradation of recognition performance is highly desirable.
In this paper we report the results of our studies related to
one ATR database consisting of synthetic HRR radar data
generated by the XPatch software package.

2. DATA DESCRIPTION AND
PREPROCESSING

The HRR database consists of signatures of four different
targets (the exact types of aircraft were unknown, but the
targets were labeled) with the following characteristics :

e Azimuth angle : —25 to 25 degrees in 1 degree steps
(51 settings)

This research was supported in part by the Advanced Re-
search Projects Administration under Grant MDA972-93-1-0015,
and by Wright Laboratories.

3479

Richard A. Mitchell

Wright Laboratories, AARA
Dayton, OH 45433, USA

¢ Elevation angle : —20 to 0 degrees in 1 degree steps
(21 settings)

2 signatures at each azimuth/elevation setting corre-
sponding to in-phase and quadrature components of
the vv-polarization

1024 frequency samples per signature
e 51 x 21 x 2 x 1024 x 4 =~ 8.8 Mb per target

To extract the relevant portion of the target signature,
the radar data is preprocessed as follows :

1. The complex response is formed by combining the
in-phase and quadrature components.

2. A Kaiser window is applied to the middle portion of
256 points of the data

3. An inverse FFT is performed on this 256 point data,
and the resulting signal is shifted to center the range
profile. The shifting operation is done in such a way
that insures that the backscatter energy is centered
in the range profile.

4. The absolute value (magnitude) of the resulting sig-
nal is calculated.

5. The middle 64 points of the range profile are ex-
tracted, as most of the significant energy is now con-
tained in this region of the range profile.

While additional feature-extraction processing could be
employed, we note that this simple feature extraction pro-
cedure reduces the data to the essential scattering features,
and reduces the size of the signature by a factor of 32. The
preprocessing also reduces the bandwidth and the resolution
of the synthetic data to more realistic ATR levels. While
the results reported here used only this simple procedure,
we are currently considering additional signature feature ex-
traction. For example, we could use parametric estimation
techniques to further reduce the data to a set of parameters
which describe the signature as a collection of complex ex-
ponentials. In addition, we have preliminary results which
indicate that there is some benefit to applying logarithmic
equalization to the preprocessed data.

3. CLUSTERING

Clustering the synthetic radar data constitutes the first step
in the classification system we considered. The underlying
assumption is that the codewords resulting from clustering
can model the variability in target response as the look

0-7803-2431-5/95 $4.00 © 1995 IEEE

055 T T T

02 i ; H H ; ; i i
2 8

Figure 1: MSE index for k-means codewords of target 1

angle changes and thus, can be used to efficiently classify
targets.

Clustering of the data can be done using the popu-
lar k-means algorithm {1, p. 24]. In this algorithm the
cluster centers are initialized to randomly selected train-
ing data vectors. Clusters are then formed around these
centers based on a minimum {typically Euclidean) distance
criterion. Cluster centers are then replaced by the cluster
sample means and the process is repeated until no further
change in cluster assignments is observed from one iteration
to the next. This algorithm has been found to work very
well on our high dimensional data set.

In order to examine the validity of the resulting code-
words, and as a means of estimating the number of code-
words needed to represent the data well, we use two in-
dices of partitional validity (IPV) [2], the mean square error
(MSE) and the Calinski-Harabasz Index (CHI).

In a broad sense, the IPV’s are used to measure the
ability of the codewords (clusters) to represent the structure
in the data. The mean square error is the simplest and most
widely used of all the IPV’s. It is given by :

N
1
MSE = Z_j llzi = mall® (1
where ||.|| denotes the Euclidean norm, z; is the i** data

vector, my(z,) is the codeword nearest the data vector z;,
and N is the number of data vectors. MSE measures the
spherical compactness of the clusters.

The CHI can also be employed to determine cluster va-
lidity. This index measures the compactness of clusters di-
vided by the isolation of clusters. It is given by Eq. 2,

N
N - L) Z;=1 |l — mL(@.’)"2
L-17 3, Nellme = moll?

where z; is the i** data vector, my(s,) is the codeword

CHI = (@)

nearest to z;, m; is the kt* codeword vector, mg is the

2500

2 4] 8 10 12 14 16 18 20
number of codewords

Figure 2: CHI index for k-means codewords of target 1

mean of all data vectors, Ny is the number of data vectors
in the k** cluster, N is the number of all data vectors, and
L is the number of codewords.

Typical MSE and CHI vs. number of codewords (clus-
ters) plots are shown in Figures 1 and 2. As expected both
IPV's decrease as the number of codewords increases. More-
over, it appears that approximately 8 to 12 clusters should
be adequate to represent the 1071 raw signatures in this
aspect window since on the average both the MSE and the
CHI tend to level off at about this number of codewords.
Thus, these IPV’s indicate that a significant reduction in
the number of stored signatures is possible, but the crit-
ical test is to determine the effect of catalog compression
on classification performance, an issue not definitively ad-
dressed in previous work by other authors [3].

4. CLASSIFICATION

For this study we examine the performance of two different
classification techniques that naturally lend themselves to
the utilization of cluster codewords.

4.1. Nearest Neighbor Classification

Nearest neighbor classification (NNR) is a widely used method
which is a special case of the voting k-Nearest Neighbors
(k-NN) algorithm [4, Ch. 7], with £ = 1. In NNR classi-
fication an input data vector is assigned to the same class
as that of the training data vector that it is closest to in
some metric. We perform classification simulations on the
HRR data using the NNR algorithm with the Euclidean
distance as the metric. The probability of error of multi-
class NNR classifiers is known to be less than twice that of
a Bayesian classifier asymptotically, i.e. as the number of
training data vectors approaches infinity. Hence, this exper-
iment provides us with a measure that classification perfor-
mances with compressed (clustered) training data sets can
be compared against.

3480

The clustering process can also be used in conjunction
with the NNR classifier to directly divide the data vector
space into decision regions. This technique, which we will
refer to as NNRC is basically the same as the NNR algo-
rithm except the training data set is replaced by a much
smaller set of codewords from the clustering stage.

4.2. RBF Classification

Clustering results can also be used by more sophisticated
classification algorithms such as the RBF network [5] in-
stead of NNR. RBF networks can combine overlapping lo-
calized regions generated by simple kernel functions (typ-
ically Gaussian functions) to create complex decision re-
gions. Bayesian a posteriori class probabilities can then
be estimated when desired network outputs are 1 of L (one
output unity, all others zero, L being the number of classes)
and a squared error criterion is used [6]. The Bayesian a
posteriori class probabilities can then be used to perform
classification. The advantages of the RBF classifier are as
follows :

o they are capable of forming arbitrarily complex deci-
sion boundaries

e they can approximate Bayesian classifiers when un-
derlying class distributions are Gaussian mixtures

e they are better suited for certain classification prob-
lems than traditional Multi Layer Perceptron (MLP)
neural networks with sigmoidal activation functions [1].

e they can be incrementally modified to accomodate
new target scenarios

¢ they permit real-time implementation

The RBF neural network architecture consists of one
hidden layer with nodes evaluating the kernel function on
the input and one output layer, which simply forms a linear
combination of the outputs of the first layer as given in eq. 3

M

f@) =Y arg(lle — mal) (3)

k=1

where z is a real valued input vector, g(.) is the kernel
function, m; and a; are the center (mean), and output
weight of the k** node, respectively and M is the number
of nodes. The kernel function g(.) is a radially symmetric
function with a single maximum at the origin and which
drops off to zero as the distance from the origin increases.
In this paper, we have employed Gaussian kernel functions
of the form :

g(z) =711, (4)

The training of RBF networks involves three different
problems :

1. Finding the number of nodes needed in the hidden
layer

2. Finding the parameters (“means”, “widths”, etc.) as-
sociated with each hidden-layer node

3. Finding the weights to the output layer.

Training can be done in a completely supervised manner
where an error measure such as the total squared error on
the training set is defined at the output. In this case, train-
ing becomes a computationally intensive non-linear opti-
mization problem which may yield high precision results,
but is plagued by slow convergence and difficulties stem-
ming from local minima. On the other hand, hybrid RBF
training methods combining unsupervised and supervised
learning are computationally more efficient and have also
been shown to learn faster than MLP networks of compa-
rable sizes using backpropagation [5]. Hence, we chose to
employ the hybrid method for the training of the RBF clas-
sifier.

In hybrid RBF training one typically uses unsupervised
learning for the first and second training stages and super-
vised learning for the third stage.

To find the necessary number of nodes one may resort
to hierarchical clustering algorithms which heuristically de-
termine the number of clusters present [7] or one can use a
clustering method with a preassigned number of clusters for
various numbers of clusters and then make a choice based
on certain indications in IPV plots such as “knees” or “flat
plateaus”, depending on the properties of the IPV being
used.

There are various approaches to the second problem of
finding the parameters associated with each RBF node. In
the case of Gaussian kernel functions in eq. 3, the parame-
ters needed are the means, m; associated with the Gaussian
functions. The means can be taken to be the cluster means
provided by a clustering algorithm. One may try to improve
on these means by post-processing, but often this does not
result in significant performance improvements.

The third problem of finding the weights to the out-
put layer can be solved by a variety of well established ap-
proaches. For example, one can use the pseudo inverse [8]
to find a least mean square solution to Eq. 5,

d=Fa (5)

where F is the node matrix containing the outputs of all
nodes to all data vectors in the training set, d is the desired
output vector, and a is the output weight vector. However,
if the database is large, or if one wants to use an on-line
method as opposed to a batch approach, gradient-descent
algorithms such as LMS [9], can also be employed.

For the results presented here the RBF network with
Gaussian kernel functions was trained as follows :

o k-means clustering codewords were used as estimates
of RBF centers (means)

e the output weights were calculated using the pseudo-
inverse method.

Note that we are not directly interested in finding the num-
ber of nodes needed in the hidden layer, since our aim in
this paper is to examine the performance of the RBF clas-
sifier as the compression factor (i.e. the number of code-
words/nodes) is varied. However, as the results of the next
section suggest, IPVs can be used to determine the number
of required nodes.

3481

5. SIMULATIONS AND RESULTS

Our underlying premise is that the codewords resulting
from the clustering stage can be used efficiently to clas-
sify targets. To validate this assumption we perform a set
of simulations. This experiments will also allow us to com-
pare the classification performances of the NNR, NNRC and
RBF classifiers.

For the classification simulations conducted we divided
the data into two sets, allocating %”‘ to training and %t
to testing. This is done by randomly sampling in the az-
imuth/elevation angle space. Twenty Monte Carlo simula-
tions were performed in this way. Estimates of the proba-
bility of error and the confusion matrix were calculated as
sample averages along with the sample standard deviation
of the probability of error estimate.

As expected the NNR classifier has the lowest probabil-
ity of error, P. = 0.0064. The resulting classification perfor-
mances for the NNRC classifier with data vectors arbitrarily
selected from the training data set as codewords (NNRC-
A), the NNRC classifier with k-means supplied codewords
(NNRC-K), and the RBF classifier are depicted in Fig. 3.
This figure shows how the probability of error for the three
classifiers varies as the database is compressed by factors
from about 50 to 500. The error bars around estimated F.
values in Fig. 3 mark one (estimated) standard deviation
above and below the estimated P. values.

We see that the RBF classifier outperforms the NNRC-
K classifier, which outperforms the NNRC-A classifier. The
performance improvement with RBF over NNRC-K is more
pronounced at higher compression factors because the RBF
classifier makes better use of the codewords. As the num-
ber of codewords used approaches the compression levels
(i.e. about 10 codewords, compression factor= 107.1) sug-
gested by the IPV plots the NNRC-K classifier performance
approaches that of the RBF classifier and both algorithms
perform quite close to NNR. It is interesting to note that
the RBF classifier can attain a given level of probability
of error at about twice the compression factor as that of
the NNRC-K classifier. We also observe that as the com-
pression factor increases, all three classifiers tend to exhibit
larger variances in their probability of error estimates.

6. CONCLUSIONS

We have presented results which clearly show that a HRR
model-based classifier can be constructed with a compressed

model catalog without suffering significant performance degra-

dation at compression rates around 100. We examined two
efficient classification schemes (NNR and RBF) which use
synthetic HRR radar data for ATR applications. The supe-
riority of the RBF classifier, especially at high compression
rates is demonstrated. The results are also found to be in
agreement with the implications of the IPV plots obtained
for the data.

7. REFERENCES

{1] D. R. Hush and B. G. Horne, “Progress in Supervised
Neural Networks,” IEEE Signal Processing Magazine,
pp. 8-39, January 1993.

Probability of error vs. compression factor
T

T T T T

300
Compression factor

Figure 3: Effect of compression on classification perfor-
mance

[2] G. W. Milligan and M. C. Cooper, “An examination of
procedures for determining the number of clusters in a
data set,” Psychometrika, vol. 50, no. 2, pp. 159-179,
June 1985.

[3] J.S. Baras and S. I. Wolk, “Model based automatic tar-
get recognition from high range resolution radar target
returns,” in Proceedings of the SPIE International Sym-
posium on Intelligent Information Systems, Apr. 1994.

[4] K. Fukunaga, Introduction to Statistical Pattern Recog-
nition. San Diego, CA: Academic Press, 2 ed., 1990.

[5] J. Moody and C. Darken, “Fast Learning in Networks
Of Locally Tuned Processing Units,” Neural Computa-
tion, vol. 1, pp. 281-294, 1989.

[6] M. D. Richard and R. P. Lippmann, “Neural Network
Classifiers Estimate Bayesian & posteriori Probabili-
ties,” Neural Computation, pp. 461-483, 1991.

[7] M. T. Musavi, W. Ahmed, K. H. Chan, K. B. Faris,
and D. M. Hummels, “On the training of radial ba-
sis function classifiers,” Neural Networks, vol. 5, no. 4,
pp- 595-603, Apr. 1992.

[8] A. Albert, Regression and the Moore-Penrose Pseudoin-
verse. San Diego, CA: Academic Press, 1972.

[9] B. Widrow and M. A. Lehr, “30 Years of Adaptive Neu-
ral Networks: Perceptron, Madaline, and Backpropaga-
tion,” Proceedings of the IEEE, vol. 78, no. 9, pp. 1415-
1442, September 1990.

3482

