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ABSTRACT

The analysis of infant cry vocalizations has been the focus of
a number of efforts over the past thirty years. Since the infant
cry is one of the only means that an infant has for commu-
nicating with its care-giving environment, it is thought that
information regarding the state of an infant, such as hunger
or pain, can be determined from an infant’s cry. To date, re-
search groups have determined that adult listeners can differ-
entiate between different types of cries auditorily, and at least
one group has attempted to automate this classification pro-
cess. This paper presents the results of another attempt at au-
tomating the discrimination process, this time using artificial
neural networks (ANNs). The input data consists of succes-
sive frames of one of two parametric representations gener-
ated from the first second of a cry following the application of
either an anger, fear, or pain stimulus. From tests conducted
to date, it is determined that ANNs are a useful tool for cry
classification and merit further study in this domain.

1. INTRODUCTION

Most parents learn to distinguish between the different types
of cries of their infant, and in so doing, can determine whether
their child is angry, hungry, uncomfortable, or in pain. Once
the state of their child is determined, the parent can then take
the necessary steps to tend to the child’s needs. In a clin-
ical setting, however, an abnormal cry can be an indicator
of genetic or pathological problems and in the latter cases,
the rapid identification of infants who are said to be “at risk”
can lead to a faster, and, hopefully, more successful treatment
which will enable the development of these infants to proceed
along a normal path.

The analysis of the infant cry has been the subject of a
number of research efforts over the past thirty years. Al-
though the art of so-called diagnostic listening dates back to
the days of ancient Greece and Hippocrates, this art was es-
sentially ignored until in the mid 1800’s [1]. At that time,
Charles Darwin treated the topic of diagnostic listening in ref-
erence to infant crying and screaming quite comprehensively
using a series of photographs and drawings to illustrate vari-
ous expressions of emotion [2].

Almost a century after Darwin first penned his observa-
tions, perhaps the most comprehensive treatment of infant
crying was started by the research group led by Olé Wasz-
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Hockert [3]. For over 30 years, this Scandinavian research
group has determined that a number of different cries, uttered
when an infant is hungry or in pain, can be classified audito-
rily, and that the cries of healthy babies can be distinguished
from those that have pathological conditions, central nervous
system disorders, or genetic disorders both auditorily and vi-
sually through the use of spectrograms [4].

These and other studies have also attempted to identify the
distinguishing features in the cry signal which would even-
tually enable the classification to be done automatically by
a computer system, so as to be useful in a clinical setting
[5, 6, 7]. The additional information derived from a more de-
tailed analysis of this readily available signal and from pa-
rameters derived from this signal, using superior analysis and
classification techniques better suited to this class of signal,
could potentially be useful for eventual diagnosis of pathol-
ogy or for identifying the potential of an infant at risk.

Although a number of groups have attempted to identify
the distinguishing characteristics between different types of
cries, few have gone on to use these features to automate the
classification process. Recently, one group has attempted to
identify an infant’s so-called “level-of-distress”, an indicator
intended to mimic adult perceptions of the aversiveness of a
specific cry, using hidden Markov models (HMMs) that are
based on “cry phonemes” [8]. However, this work has not
attempted to specifically identify infant state, pathological,

_or genetic disorders from the cry. If other groups have at-

tempted automating the classification or discrimination pro-
cess between different types of cries, their results have not
been documented in the literature.

The method presented in this paper uses the robustness,
flexibility, and generalization properties of artificial neural
networks to perform classification of infant pain cries, a do-
main where neural networks have not been used in the past.
In this first stage of tests, different parameters derived from
the input signal serve as inputs into a given neural network,
with different network architectures and learning paradigms
being investigated as well, in order to determine the combina-
tion of input parameters and network architectures which are
best suited for the correct classification of different cry types.
1t is hoped that just as a parent can learn over time to differ-
entiate between the different types of cries uttered by their in-
fant, an artificial neural network will also be able “learn” to
differentiate between different types of cries.
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2. METHODS
2.1. Data Set

Two hundred and thirty cry episodes were recorded at the
Montreal Children’s Hospital from sixteen healthy 2-6 month
old infants who had no history of perinatal or postnatal com-
plications. The cry episodes were the result of one of three
stimulus situations: pain or distress from routine immuniza-
tion; fear or startle from a jack-in-the-box; and anger or frus-
tration from a head restraint. The recordings in this data set
were made on a Sony TCM-500DEV cassette recorder with
an omni-directional Senheiser MKE 2 microphone placed
10 cm from the infant’s mouth. The audio signals were then
low-pass filtered to 8000 Hz and sampled at 16 kHz using a
12-bit analogue-to-digital converter prior to their transfer on
a SPARC 10+ for subsequent analysis.

Since important events in the cry signal are thought to oc-
cur in the first second of the utterance following the onset of
the cry after the stimulus event 7], the first second of cry ut-
terances lasting at least 0.75 seconds after the cry onset were
used for the subsequent feature extraction data set to be used
in the classification experiments. Of the 238 recordings in
this data set, 195 had vocalizations with durations that sat-
isfied this criterion. The other 37 recordings were discarded
from the study.

2.2, Parametric Representations

Using the research done on the parametric representation of
speech signals for the purposes of speech recognition as a
starting point for similar representations of infant cry vocal-
izations for classification purposes, the following two feature
sets were extracted from the signal; 10 mel-cepstrum coeffi-
cients [9], and 19 filter-band energies per input frame of cry
utterance data, with the filters spaced according to the “Bark”
or “mel” scale [10].

The utterances were segmented into successive 256-
sample (16 ms) frames with successive frames overlapping
by 50%. Consequently, for a 1 second portion of the cry ut-
terance, 125 frames of feature vectors would be generated. If
a given utterance lasted less than 1 second, the last vector of
values was repeated from the end of the utterance to fill the
remaining empty vectors. These two parametric representa-
tions were then normalized and scaled to values between +1
in order to decrease their dynamic range, and then used as in-
puts into the different neural network architectures for train-
ing and testing.

3. ANN ARCHITECTURES

Four neural network architectures were investigated in this
study. First, simple feed-forward neural networks, using both
full and tessellated connections between adjacent layers [11],
were trained and tested using the static input patterns de-
scribed above. In order to determine if time information
would be useful for the purpose of classification, recurrent

neural networks were used {12]. For this set of tests, both
the size and overlap of the input data frame were varied in
order to determine the “granularity” of the input parameters
which would yield the best results for this application. Note
that larger frames with less overlap between the frames give
a coarser time representation, whereas smaller input frames
with more overlap between the frames yields a finer time rep-
resentation.

Time-delay neural networks (TDNNs) [13] were also
tested in order to determine if the work done to model the dy-
namic nature of speech using this architecture could be use-
ful for the classification of infant cry signals. In this set of
experiments, a number of parameters in the neural network
were varied, such as the input delay length size, and the hid-
den layer configuration as well.

The fourth neural network architecture trained and tested
was a cascade correlation neural network [ 14]. This paradigm
“grows” a hidden layer based on the network error of a previ-
ous training session. This particular architecture was selected
in order to determine if this application could benefit from the
use of a method that continues to add hidden layer nodes un-
til the overall error of the network drops below a predefined
value.

In order to train and test the above paradigms, three differ-
ent public domain neural network software simulators were
used. Version 6.0a of the Aspirin/Migraines package [15], de-
veloped at the MITRE Corporation, was used to train feed-
forward networks, with both full and tessellated connections,
and recurrent networks. Version 3.1 of Xerion, a package de-
veloped at the University of Toronto [16], was used to sim-
ulate feed-forward networks with full connections and cas-
cade correlation nets. The other package used was version
3.2 of the Stuttgart Neural Network Simulator, which was de-
veloped at the University of Stuttgart in Germany [17]. This
software was used to create and simulate both time-delay and
cascade correlation neural networks.

4. EXPERIMENTAL RESULTS

Since a comprehensive and complete presentation of all the
results obtained for all the tests performed, including a fair
treatment of error analysis, would be quite prohibitive for in-
clusion into this paper, only the best results for the two dif-
ferent parameter sets used on the four different architectures
are presented in tables 1 and 2, which are explained below.
All the artificial neural networks were trained to distinguish
between anger, fear, and pain, so that every neural network
trained had three outputs, one used for each of the three stim-
ulus events in the data set. Due to the large input frame size
for most of the neural network architectures and of the small
number of input data files available, the strategy of 10-fold
cross validation was used to partition the data into ten mutu-
ally exclusive sample sets, nine of which were used to train
the network and the remaining set of files used as the test set
[18]. This process was repeated until each of the sets were
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used as the test set at least once, in order to perform an error
rate estimation which is as close as possible to an unbiased
estimator of the true classification rate.

4.1. Mel-Cepstrum Coefficients Results

The feed-forward and cascade correlation networks using the
mel-cepstrum data set as inputs, all had 1375 input nodes, cor-
responding to 125 vectors of 11 mel-cepstrum coefficient ele-
ments. The number of input frames corresponds to a 1 second
segment of a cry vocalization and the 11 element vector cor-
responds to 10 mel-cepstrum coefficients augmented by the
total energy of the frame.

For the feed-forward network, both for full and tessel-
lated connections between the adjacent layers, both the hid-
den layer number and size were varied. In table 1, the col-
umn labeled FF reports the results for a fully connected net-
work having 45 hidden nodes for this input data set. Col-
umn FT displays the results of a feed-forward neural network
with tessellated connections grouping 25 mel-cepstrum vec-
tors ([25 x 11]), with an overlap of 10 vectors in subsequent
groupings making for a hidden layer consisting of 23 nodes.

The RNN column of table 1 reports on the best results ob-
tained for a recurrent neural network. This network had an
input frame size of 75 mel-cepstrum vectors, with an overlap
of 66% between subsequent input frames, three delay units on
each of the input and output nodes, and containing 36 hidden
layer nodes.

The time-delay neural network which gave the best result
for this input set is reported under column TDNN in table 1.
This ANN had a delay length of 105 vectors, representing a
rather large delay length, considering that the total input delay
length is 125 vectors. The hidden layer width of this TDNN
consisted of 5 nodes.

Column CC corresponds to the best results for a cascade
correlation network. After training was completed for this
ANN, 69 hidden layer units had been created.

4.2. Mel Filter-Band Energies Results

For the mel filter-band energy parameter representation of
the signal, the 19 filter-band energies per window were aug-
mented by an additional value containing the total energy for
that window, so that in all, 125 vectors, each comprised of
20 mel filter-band energy values, were used, corresponding
to 2500 input nodes.

In tests involving feed-forward networks, both for full and
tessellated connections between adjacent layers in the net-
work, both the number of hidden layers and number of nodes
inthe layers were varied, as was the case for the mel-cepstrum
coefficients.

In table 2, the column labeled FF reports the best results
for a fully connected network. This network has 25 hidden
nodes. Column FT displays the results of a feed-forward
neural network with tessellated connections grouping 20 mel
filter-band energy vectors ([20 x 20]), with an overlap of 15

Mel-Cepstrum Coefficients

ANN FF FT RNN | TDNN CcC

Anger | 74.1% | 70.7% | 85.2% | 70.3% | 29.6%
Fear 125% | 12.5% | 12.5% | 0.00% | 0.00%
Pain 90.4% | 84.0% | 74.4% | 64.8% | 49.6 %
Overall | 79.4% | 74.7% | 72.3% | 61.0% | 400 %

Table 1; Correct Classification Rates Versus ANN Architecture for
Mel-Cepstrum Inputs

Mel Filter-Band Energy Coefficients

ANN FF FT RNN | TDNN CC

Anger | 852% | 852% | 48.1% | 555% | 185 %
Fear 12.5% | 0.00% | 6.25% | 0.00% | 0.00 %
Pain 83.2% | 752% | 88.8% | 72.0% | 84.0%
Overall | 779% | 71.8% | 70.7% | 61.5% | 59.0%

Table 2: Correct Classification Rates Versus ANN Architecture for
Mel Filter-Band Energy Inputs

vectors in subsequent groupings making for a hidden layer
consisting of 22 nodes.

The RNN column of table 2 reports on the best results ob-
tained for a recurrent neural network. This network had an
input frame size of 75 mel filter-band energy vectors, with an
overlap of 66% between subsequent input frames, three delay
units on each of the input and output nodes, and containing 18
hidden layer nodes.

Column TDNN reports one the time-delay neural network
which gave the best results for this input set. This ANN had a
delay length of 105, given a total delay length of 125 vectors,
and a hidden layer width of 10 nodes.

Column CC corresponds to the best results for a cascade
correlation network. After training was completed for this
ANN, only 4 hidden layer units had been created.

5. DISCUSSION

From the results obtained from both parametric represen-
tations displayed in table 1 and 2, the following can be
stated. For both cases, feed-forward neural network architec-
tures yield the highest correct classification rates with fully-
connected networks giving slightly better results than with
what could be achieved using tessellated connections. Insofar
as time information is concerned, it would seem that the re-
current neural networks perform better than time-delay neu-
ral networks. This would imply that the “stricter” encoding
of sequential and time-dependent information inherent in the
time-delay neural network architecture is not very useful for
cry discrimination. This observation is intuitive if one thinks
of the type of information contained in both cry signals and
in speech signals.

Since speech is defined in terms of phonemes, with a
specific sequence of acoustic events denoting a specific
phoneme, then time-delay neural networks are an effective
architecture for capturing this information in an input frame

3477



of parameters. For neonates, however, vocal tract shape is
affected by a number of physiological or psychological ef-
fects, which may not be under the direct volitional control of
the infant. Consequently, the occurrence of specific acoustic
events in cries of the same class would seem to be more im-
portant than the sequence in which these events occur.

That being said, it is understandable that recurrent net-
works with the large time granularity fares better than the
time-delay neural network, since the former encodes time in-
formation on a more general level than the sequential infor-
mation encoded by a TDNN. As well, since it would seem
that the occurrence of acoustic events is more relevant than
the sequence with which these events occur, feed-forward
neural networks yield better results than their time-dependent
counter parts, with the full-connection of nodes in adjacent
layers, which are capable of computing more complex rela-
tions between the inputs than with sparser connections, thus
yielding better results.

Also, it would appear the the best of the cascade correla-
tion results does not yield impressive results, and hence this
application would not seem to benefit from a paradigm which
can grow its own hidden layer.

Lastly comparing the results between the two paramet-
ric representations, it can be observed that the results for
both feed-forward networks yield comparable results, with
the mel-cepstrum achieving slightly better results and using
a smaller input pattern size. However, the mel filter-band en-
ergy values would seem to give better results for TDNNs and
for cascade correlation nets than the mel-cepstrum inputs.

6. CONCLUSION

This paper has presented the development and application of
artificial neural networks for the classification and discrim-
ination between three types of infant cries; anger, fear, and
pain. This study represents the first attempt at the application
of ANNSs in the domain of infant cry classification. While the
results are somewhat preliminary in nature, they do indicate
that ANNs are indeed useful for this application, with fully
connected feed-forward networks giving the best results, and
cascade correlation networks giving the worst results. Fur-
ther tests should focus on using different features and differ-
ent neural network paradigms. As well, future work will ex-
pand the study to include premature infants in this study.
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