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ABSTRACT

Although the family of LVQ algorithms have been
widely used for pattern classification and have achieved
a great success, the rigirous theoretical studies on the
classification performance of LVQ algorithms have
seldom been made. In this paper, the asymptotical
performance of LVQ1, LVQ2 and LVQ2.1 algorithms
have been studied thoroughly, and three significant
conclusions have been achieved respectively.
Furthermore, a simple modification scheme to LVQ2
algorithm has been developed and analyzed on the
asymptotical performance, which can produce the
optimal or nearly-optimal classifier in the stable
equilibrium state for the classification problems with
classes overlapping.

1. INTRODUCTION

Quantization(LVQ)  algorithms
developed by Kohonen are a family of training

Learning  Vector
algorithms for the nearest-neighbor classifiers, which
include LVQ1, LVQ?2 and its improved versions LVQ2.1,
LVQ3 algorithms [1-3]. The family of LVQ algorithms
are widely used for pattern classification such as speech
recognition, and the satisfactory results are obtained [4].
Furthermore, in many cases, LVQ algorithms (e.g.,
LVQ2 algorithm) can achieve better results than other
neural network classifiers in spite of their simple and
time-efficient training process.

Although LVQ algorithms have achieved a great
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success in the application of pattern classification , and it
is also generally thought that LVQ algorithms such as
LVQ2 algorithm can produce the optimal classifier, the
rigirous theoretical analysis of the classification
performance for LVQ algorithms is seldom made [5,6],
especially of the asymptotical performance for
classification. In this paper, the asymptotical analysis of
LVQ1, LVQ2 and LVQ2.1 algorithms for classification
is made thoroughly, three significant conclusions have
been derived respectively in Section 2, and an effective
modification scheme to LVQ2 algorithm is developed

and analyzed in Section 3

2. ASYMPTOTICAL ANALYSIS OF LVQ
ALGORITHMS FOR CLASSIFICATION

Without loss of generality, in one-dimensional case,
suppose there are two classes C, and C, with their

Class C, is

represented by its reference vector m, , i=1,2. The

respective mean vectors m’, and m’, .

family of LVQ algorithms are aimed at adjusting the
reference vectors with different learning schemes to

make them form the optimal classifier.

2.1. LVQ1 Algorithm

Firstly, we discuss the classification performance of
LVQ1 algorithm for the linearly-separable problem (as
shown in Fig.1) in the asymptotical sense. For LVQIl
algorithm, the equilibrium state equation can be derived
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as (suppose the learning step (#) > 0) [1]:

[}, PICOP(C Xt = m ) =3, pHCIP(C, Xox =) =0
Jzi

(0]
where ij=1,2, V; and V, are the nearest partition

regions of m; and m, respectively. In the equilibrium
state, suppose the reference vectors m; and m,

converge to the optimal locations and form the optimal

classifier with no classification error. Then we have
P(IC e, =0, and p(xiCy)sez;=0- So Eq.1) can
be simplified as:

| PHCPC)x-myax =0, (i=12) )

|, PG
mi = >
[, PRCHP(G )

(i=12) 3)

From Eq.(3), it can be seen that the values of the
reference vectors m; and m, are actually equal to those

of the mean vectors m’; and m’, respectively. That is to
say, if the reference vectors m; and m form an optimal

classifier with no classification error in the equilibrium
state, then the mean vectors m’; and m’, will also form

the optimal classifier. Therefore, we can see that, if the
mean vectors m'; and m’, can not make up an optimal
classifier, LVQ1 algorithm will not produce such
reference vectors as to form the optimal classifier in the
equilibrium state. We can easily generalize and develop

a significant conclusion as follows:

Theorem 1. For linearly-separable pattern
classification problems, LVQ1 algorithm will not
produce the optimal classifier unless the mean
vectors of each pattern class can make up the

optimal classifier.

2.2. LVQ2 Algorithm

For LVQ2 algorithm, we consider the classification
problem with classes overlapping, as shown in Fig.2. In
the same way, the equilibrium state equation of LVQ2
algorithm can be derived as:

[, PHCOP(COG = m)ds = [, p(HACP(C)x = m )z =0
(4a)
J, PHICIP(C)x = ma)dx = [ p(AIGIP(Cy)x = my)de=0
(4b)
where V; and V), depicted in Fig.2 are two symmetric
regions in the "window" defined in LVQ2 algorithm with
respect to the centroid of the "window". Combining
Eq.(4a) with Eq.(4b) as Eq.(4a)+Eq.(4b), we can obtain
that (m, # m,) :

|, PHICOP(COde = [ p(HCHP(C)d  (5a)

2 1

[ w(HACOP(C)dc = | xp(xIC)P(Cy)de (5b)
2 1

Make Eq.(5b) + Eq.(5a), then

E[x|x belongs to classC; and x is located in the region¥; ]

= E[x|x belongs to classC, and x is located in the region}] |
(6)

where  E[.] denotes the expectation operator.
Obviously, the above Eq.(6) is definitely not true.
Therefore, we can see that Eq.(4a) and Eq.(4b) can not
be simultaneously satisfied. The conclusion can be stated
as:
Theorem 2. For the classification problem with
classes overlapping, LVQ2 algorithm will not lead to
any stable equilibrium state.

From the theorem, it can be inferred that LVQ2
algorithm can only be applied very limited times for the
classes-overlapping classification problems, because no
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stable equilibrium state exists in that case. Otherwise, it

will result in a very detrimental effect that the distance
between the reference vectors m; and m, will become

closer and closer [3], even turn to zero.
2.3. LVQ2.1 Algorithm

LVQ2.1 algorithm is an improved version of LVQ2
algorithm which aims at eliminating the detrimental
effect described above[2]. Similarly, the equilibrium
state equation of LVQ2.1 algorithm can be described as
(for the same classification problem as shown in Fig.2):

'jVqup (HAG)P(G ) x — my )de

- jV . PEC)P(C)(x —my)de=0 (72)
1+72

4

[y PHICP(C)e =y

L—jpi+[/2p(xlC1)P(Cl)(x—”h)CbC=0 (7b)

By means of the same derivation method as that for

LVQ2 algorithm, we can obtain that the reference
vectors m; and m will reach the stable equilibrium state

if and only if both of the following equations are
simultaneously satisfied,

H,,l,,z PHGIP(C)dx= jwz PHCP(Cy)dx (8a)

X E[x|x belongs to C; and x is located in the "window " of V] +V2]
=E[x|x belongs to C;, and x is located in the "window " of ¥ +¥;]

(8b)

Theorem 3. For the classification problem with
classes overlapping, LVQ2.1 algorithm can lead to a

stable equilibrium state if and only if Eq.(8a) and

Eq.(8b) are simultaneously satisfied.

In the case of classes-overlapping with only one
crossing point existing for the probability density
functions of two classes (e.g., the case as shown in Fig.2),
it can be also proved that Eqs.(8a) and (8b) will not be
simultaneously satisfied. It is very rare that Eqs.(8a) and
(8b) are simultaneously satisfied for the classes-
overlapping classification problems (except for some
special cases). Furthermore, LVQ2.1 algorithm will
result in the effect of the distance between m; and m,
becoming farther and farther for the problem as shown in
Fig.2, which is opposite to that of LVQ2 algorithm.

3. A MODIFICATION SCHEME TO
LVQ2 ALGORITHM

In order that the classification algorithms can lead to a
stable equilibrium state corresponding to the optimal
classifier, a slight modification to LVQ2 algorithm

should be made that the values of adjustment for the two
reference vectors m; and m; are taken the same during

each step of denoted as  A(¢)
(>0, where ¢ denotes the #-th iteration). A
simple selection for the adjustment value A(f) can be
made as A(f) = (|x(1) — my (1) +]x(1) — my(0))) 1 2.
The direction of adjustment is the same as that for LVQ2
algorithm. In to LVQ2 algorithm, the

equilibrium state equation can be derived as:

iteration,

contrast

81, PGICOP(CAx = 8, [, p(xIC2)P(Cy)de =0

%)

where A, and A, denote the mean values of adjustment

during the whole iterative procedure for m; and m,

respectively. To clarify the meaning of Eq.(9) more

intensively, the equation are simplified by applying the
Intermediate Value Theorem of Integration as:

APy CP(C)AY, = Ay p(xi| GIP(C)AY, - (10)
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where x; and x, are two points in the region }; and
V, respectively, AV and AV, are the sizes of }/| and
V,,and AV, = AV,. Suppose A; = A,, and because of
the very narrow "window", x, and x, are very close to

x, which is the centroid of the "window" (depicted in

Fig.2), so the above equation can be further
approximated as:
P(x|CLP(Cy) = p(x,]Cy)P(C3) (1)

which is just the equation required by Bayes decision

rule. Therefore, the modification scheme to LVQ2
algorithm will ultimately lead to a stable equilibrium
state corresponding to the optimal or nearly-optimal
classifier, which can obtain the optimal classifier by
finely adjusting the value A,/A,.

4. CONCLUSION

In this paper, the asymptotical performance of LVQI,
LVQ2 and LVQ2.1 algorithms has been studied
thoroughly in one-dimensional case, and three significant
conclusions have been achieved respectively.
Furthermore, a simple modification scheme to LVQ2
algorithm has been presented and studied on the
asymptotical performance. The analysis shows that the
modification scheme to LVQ2 algorithm can lead to a

stable equilibrium state corresponding to the optimal or

Actual decision boundary Optimal decision boundary

p(x) \ zZ
Class C,; Class C,
a m'l r};,’ b ml; ,;,2 c x

Fig.1 A linearly-separable classification example

nearly-optimal classifier for the -classes-overlapping
classification problems. All the conclusions can be
verified by experiments. As for the multi-dimensional
cases, we can treat them as multiple one-dimensional

cases.
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Fig.2 A classification example with classes overlapping
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