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ABSTRACT

This paper addresses two types of problems which
prove difficult for tradtional classifiers: having very
limited training data for at least one class, and having
classes with a large amount of overlap. Issues discussed
will include the 1) use of nearest neighbor methods and
neural nets for classification of data which is completely
inseparable by linear and quadratic classifiers, 2) dealing
with training sets of unequal size from each class.

1. INTRODUCTION

This paper addresses the difficulties experienced in
classifying groups with large overlap. Three groups of
simulated 8-dimensional data are generated and examined
with 3 standard statistical classification methods [1,2], a
linear classifier, a quadratic classifier, and a nearest
neighbor classifier. The results are compared to those of a
backpropagation neural net.

1.1 The classifiers

Statistical classifiers fall into two categories,
parametric and non-parametric. In the first type,
classification rules are based on models of the probability
density function of the data. The linear and quadratic
classifiers are of this type. Each are based on the
assumption that classes have Gaussian distributions, with
mean M and Z, and density functions of the form:
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The mean and covariance for the Gaussian
distribution are defined from expected values as:
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These are usually unknown, and unbiased estimates,
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Fukunaga [1] shows that the quadratic decision rule
for two Gaussian distributions, ®; determined by M; and
X1, and occurring with a posteriori probability Py, and
o7 determined by Mj and X2, having a posteriori
probability P»=1-Pj is given by:
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For h(X) > 0 the sample is judged to be a member of w,
and for h(X) < 0, the sample judged to be in w>.
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The linear classifier is a special case of the quadratic
classifier. It assumes that the covariances of the two
distributions are the same: £y =Z{ = Z. Then
h(X) = (M1-M2)TE'1(2X-M1—M2) +1In (P1/P3) @)
For h(X) > 0, X € @y, and for h(X) < 0, X € ws.

The parametric methods are limited by the
assumption that distributions are Gaussian. When a
density function is clearly not Gaussian and is dissimilar
to all other easily quantified distributions, one can still
directly estimate the density function of each class at each
point to be examined. This is the basis for non-
parametric classification methods. These methods assume
only that there are enough points from each class such
that in any small region within the decision space, that
the number of points occurring in these regions indicate
the true nature of each density function.

One of the most commonly used non-parametric
methods is the k-nearest neighbor method. Here, one
determines how many of the k neighbors nearest to each
point are from each class. If neighbors are from different
classes, then either a voting method may be used, or one
may reject that point, refusing to classify it.

1.2 The Back-propagation neural net

The back-propagation neural net (Rumelhart, et al.
[3], and Lippmeann [4]) consists of 3 layers of processing
units, referred to as “nodes” or “neurons”, which pass a

linear combination of inputs through a nonlinearity:
N

y=f(Xwixi-0) ®
i=
where y is the node output, 8 is the node offset, w; are
linear coefficients or “weights”, x; are the scalar inputs,
and f denotes a nonlinear function. The nonlinear
function f is chosen here to be a sigmoid function:

f(a)=(1 + ¢3! ©
This function is popular for two reasons. First, its
derivative is easily calculated:

f(@)yda = —e2[1+ 2] 2 = — f(a) e (10)
Second, the output is a number between zero and one,
with negative inputs producing outputs below 0.5 and
positive inputs producing outputs above 0.5. This allows
all nodes above the first layer to have outputs in the range
[0,1], which simplifies some calculations. It also allows
the linear combinations of inputs to be treated either as a
geometric or a logical decision boundary. The output of
each node is the input to nodes in the next layer. Figure
1 contains a representation of the connections for a 3-layer
neural net with 5 inputs, 6 middle layer (hidden layer)
nodes, and 4 outputs.
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Figure 1 Neural net connections

The neural net may either have analytically
predetermined weights, be trained on a selected training
set, or adjusted on-line with incoming data. Training the
net consists of adjusting the weights, wj, and offsets, 6,
for each node, by a minimization process discussed in
detail by Rumelhart [3]. Lippmann [4] also describes the
algorithm for implementing the back-propagation
program. In updating the weights, an estimate of the
total net error is needed. The total error, ey, is a function
of the difference between the neural net's outputs, O, and
the desired outputs, E, taken over n net outputs and N
members of the training set:

N n
er= 3 2 8(0jj - Ejj) (11)
1=1 j=1
where typically g(x) = Ixl or g(x) = x2. The back-
propagation method, however, uses only the local
estimate of the error, ej, at each of the N members of the

training set:

n
ei= 3, g(0Ojj - Ejj). (12)
J=1
The use of local error instead of global error can be the
cause of difficulties in training the net when there are
large overlaps in the training data.

2. SIMULATION DATA

Three classes of 8-dimensional data were created.
Classes 1 and 2 were generated from Gaussian
distributions having slightly different means and
covariances. Class 3 was non-Gaussian, having bimodal
distribution in each of the 8 dimensions.

* Class 1 consists of the identity distribution. Its
mean was Mj; =[00 ... 0]T and it had a diagonal
covariance £y=diag [1 1 ... 1]. Thus, each element of the
8-dimensional vector comes independently from a 0-mean
Gaussian distribution with standard deviation of 1.

e Class 2 was a Gaussian distribution with Mj = [.1
.1 ... .1]T and diagonal covariance Z3= diag [1.1 1.1 ...
1.1].

¢ (Class 3 was a bimodal distribution, where each
element had a 50% chance of being from each of two
Gaussian distributions, having a standard deviation of 0.2
and a mean of either 0.9 or -0.9. The spread of the modes
was chosen so that the overall mean and covariance
closely match those of class 1.

Histograms were generated from the first elements of
2500 samples from each of the 3 classes, shown in Figure
2. Classes were divided into 2 identically distributed
subclasses of 2500 points each or 100 points each,
referred to as 1a, 1b, 2a, 2b, 3a, and 3b.
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Figure 2 Histograms of simulated data.

3. CLASSIFIER RESULTS

Each classifier is judged by the percentage of
classification errors it makes. For each classifier, and
each pair of classes, this is tested by
1) training and testing the classifier on the same sub-

class. For each pair of classes, there are 4
classifications of this type: e.g., for the separating
class 1 from class 2, there are 1a-2a, 1a-2b, 1b-2a, and
1b-2b.

2) training the classifier on one of the pair of sub-classes,
and testing on the other. This produces a larger error.
For the nearest neighbor classifier, the test point is
already excluded from the set of neighbors tested.
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Table 1: Classifier results for classes 1 and 2: error percentages

sub- Same or linear classifier quadratic classifier | 11 nearst-neighbor | neural net classifier

classes | Other class | error percentage €ITor percentage classifier error eITor percentage
. for testing | percentage

| I/s s | I/s s 1 I/s s 1 s s

1a-2a Same 435 498 370 |41.7 333 280|472 3.8 465|447 33.0 385

Other 449 -40.7 465 (445 573 435 443 44.6 44.0

1a-2b | Same 44.1 333 370|425 332 290|479 3.8 49.0 {448 304 380

Other 44.6 583 515|444 59.5 48.0 444 46.1 46.0

1b-2a | Same : 43.6 486 4051419 283 34.0]453 3.8 49.0|432 387 380

Other 449 40.5 52.0 [44.2 598 49.0 44.8 478 41.0

1b-2b | Same 440 390 415 ]414 394 33.01457 3.8 41.0]434 336 33.0

Other 442 513 47.0 |44.1 552 46.5 44.6 464 44.0

average | Same 43.8 427 39.0 1419 336 3081465 3.8 464|440 339 369

Other 44.7 477 493 |44.3 58.0 46.8 44.5 46.2 43.8

Table 2: Classifier results for classes 1 and 3: error percentages

sub- Same or linear classifier quadratic classifier | 11 nearst-neighbor { neural net classifier
classes | Other class [ error percentage error percentage classifier error €rTor percentage
for testing | percentage
1 /s s 1 /s s 1 I/s s 1 I/s s
la-3a Same 479 41.0 365|451 393 275|320 3.8 61.5]500 437 475
Other 50.1 615 56.0 |48.0 56.8 65.0 50.8 500 515
la-3b | Same 48.0 23.0 410|448 174 295}31.1 3.8 51.5]49.1 500 48.0
Other 509 74.6 515482 79.0 45.0 497 499 495
1b-3a | Same 440 557 365474 451 305]304 3.8 465500 50.0 485
Other 479 458 505|503 512 480 503 50.0 50.0
1b-3b | Same 44.4 178 405|470 243 31.0]297 3.8 51.5]|500 479 465
Other 47.5 776 5351509 715 51.5 50.0 499 495
average | Same 46.1 344 386 ]46.1 315 29.6]30.8 3.8 528 [49.8 479 476
Other 49.1 649 529 |47.7 64.6 52.4 50.2 50.0 50.1

Table 3: Classifier results for classes 2 and 3: error percentages

sub- Same or linear classifier quadratic classifier | 11 nearst-neighbor | neural net classifier
classes | Other class | error percentage erTor percentage classifier error €rTor percentage
for testing percentage
1 1/s s 1 1/s s 1 1/s s 1 /s s
2a-3a | Same 44.1 438 375 [|43.0 353 295|312 38 505 (433 37.1 43.0
Other 45.1 46.0 500 |46.6 56.4 50.0 437 449 435
2a-3b | Same 44.0 459 370|440 563 28.0|31.1 3.8 505426 337 420
Other 45.77 433 530|449 355 510 445 422 445
2b-3a | Same 445 475 350|431 378 285|327 3.8 49.01452 371 365
Other 449 406 495|455 552 520 432 46.1 46.5
2b-3b | Same 439 230 370434 293 335|317 3.8 58.0(43.1 40.1 400
Other 456 68.2 495 1450 634 49.0 43.6 442 46.5
average | Same 44.1 40.1 36.6 [43.4 39.7 299|317 3.8 52.0]436 37.0 404
Other 453 49.5 505 }45.5 52.6 50.5 43.8 444 453

The small variation in the error percentages from 4
repetitions of classification provides a consistancy check
for the results. Results from each of the classifications
are contained in Tables 1-3, where each classifier is tested
on both large sets (1), 2500 points, small data sets (s),
100 points, and combination sets where one class is large

and the other is small (I/s). Small data sets generally give
worse generalization information than large ones [1,5].
When both classes are Gaussian, as in comparison of
classes 1 and 2, the best classifier is the quadratic.
Gaussian distributions are the main assumption made in
designing quadratic classifiers. The best classifier for
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comparison of class 1 with class 3 or class 2 with class 3
was the nearest neighbor classifier. However, there was a
clear trend with the nearest neighbor method, of improved
error as the number of neighbors was increased from 1 to
11, though the improvement was never more than 4%.
With the nearest neighbor method, the best separation is
between class 3 and either of the other two, while the
linear and quadratic methods have poor separation among
any combination of classes. This is the case, of course,
since, the means and covariances are intentionally kept
similar.

The poorest performance is from the neural net
classifier. In this research, the neural net had 8 input
nodes, 10 hidden layer nodes, and 1 output node, and
trained on 1500 cycles through the data, for a total of up
to (5000 points) * (1500 cycles) = 7.5 million updates to
each of the weights (300,000 updates for the small
classes). In trials with classes of no overlap, the net was
trained perfectly in 50,000 updates or fewer, so we can
assume that the number of training cycles is not the
problem. This differs from typical classification
problems, where the net is trained to near zero error [6,7].

Before praising the nearest neighbor classifier too
much, we considered the thought that the apparent
separation between classes may not be entirely due to the
structure of the distributions: the classifiers work on a
finite number of points, which may bias the results. To
evaluate this effect, we compare the classification error for
each method using the "a" and "b" subclasses of the same
class, in Table 4. For no bias, we expect a result of 50%.

Table 4: Classifier results for subclasses: error percentages

sub- [linear |quadratic |11-neighborfneural net
classes [classifier [classifier [classifier [classifier
error eITor eITor error
la-1b | 48.3 46.1 51.2 50.0
2a-2b | 48.0 46.2 49.3 49.1
3a-3b |47.4 46.4 49.8 50.0
average| 47.9 46.2 50.1 49.7

The nearest neighbor and neural net methods are
completely unable to separate classes generated from
identical density functions. For the statistical methods,
the error was similar to the results from the class 1-class
3 pairs, a few points lower than 50%. We can see that
using the effect of a finite sample set with the linear
classifier is a roughly 2% negative bias on the estimate of
actual error, while the quadratic classifier produces a
roughly 3% - 5% negative bias on the error. Neither the
nearest neighbor nor the neural net methods show any of
this bias.

One further observation should be made, regarding
the large/small classification by the- nearest neighbor
classifier. This algorithm cannot adjust for different set
sizes. For the I/s evaluation, error percentage is measured
as the total number of incorrect classifications compared
to the total number of points, rather than the average of
the percentages from each class. 3.8% error corresponds

to 100% misclassification of the small class and 100%
correct classifcation of the large class.

4. CONCLUSIONS

¢ When both classes are Gaussian (classes 1 and 2), the
best classifier is the quadratic.

*  The best method for comparison of either Gaussian
class with the bimodal class was the nearest neighbor
classifier.

*  The poorest performance with large classes is from
the neural net classifier. In these tests, the net was trained
until no change in classification was observed, so we can
assume that the number of training cycles is not the
problem: it is characteristic of classification of highly
overlapped classes.

¢  For small classes, all classifiers showed less error
when testing on the same data, and more error when
testing on the independent data, in comparison with large
classes. The decrease in generalization ability is most
pronounced for the quadratic classifier, where estimation
of the inverses of two covariance matrices is needed. The
best generalization was by the neural network.

e The consistent 3.8% error for the nearest neighbor
classifier with the large-small data sets corresponds to 0%
error in the large class, and 100% error in the small class.
Unlike the other methods, there is no way to compensate
for unequal class sizes.
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