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ABSTRACT

Responses of both human and animal listeners to syn-
thetic stop-consonant/vowel stimuli in which voice-onset
time (VOT) is uniformly varied are known to be ‘categori-
cal’ but an explanation of this phenomenon remains elusive.
A ‘composite’ model consisting of a physiologically-realistic
auditory model feeding its patterns of neural firing to an
artificial neural network is described. When trained by
(supervised) error back-propagation on the extreme, end-
points of the VOT continuum, the composite model is ca-
pable of reproducing closely listeners’ behaviour in classi-
cal categorical-perception (CP) studies. However, whether
the model also reproduces the so-called boundary-shift phe-
nomenon - whereby the phoneme boundary moves with
place of articulation — apparently depends upon precise de-
tails of the auditory model and so, by implication, upon
subtle aspects of peripheral auditory processing. A first at-
tempt at unsupervised training has been unsuccessful: the
likely reason for this is outlined. It is anticipated that fu-
ture work comparing the model’s responses for unsuper-
vised versus supervised training will help to elucidate the
mechanisms of categorical perception.

1. INTRODUCTION

Few topics in speech science have generated as much debate
as the phenomenon of categorical perception (CP}, whereby
stimuli from an auditory ‘continuum’ are perceived as non-
continuous. That is, stimuli are classified as belonging to
one category or another, with a sharp boundary between
them. Further, discrimination between classes is much bet-
ter than discrimination within a class. To some, this cat-
egorisation into discrete classes lies at the very heart of
linguistic decoding in speech perception - see Repp’s au-
thoritative review [1]. To others, however, CP studies are
misguided and uninformative — see Crowder’s withering at-
tack [2]. ]

Our approach is to build a ‘composite’ computational
model of auditory processing and then to explore its ability
to mimic the results of key perceptual studies in speech CP.
We use detailed physiological and anatomical knowledge to
produce a biologically-realistic model of the auditory pe-
riphery, the outputs from which are fed to an artificial neu-
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ral network (ANN) which models higher-level auditory func-
tion in much less detail. Then, by manipulating the model,
we try to identify those components that are essential to the
observed behaviour. Further, by employing different learn-
ing paradigms, we can vary the function of the ANN from
classification to feature detection — the discovery of regu-
larities in the input patterns [3]. By this latter means, we
can hope to discover automatically the features underlying
the perception of voicing.

In the remainder of this paper, we briefly outline the
key experimental results in the study of speech CP and the
stimuli used in this work (Section 2). Section 3 describes
the composite neural model, before detailing the results of
processing the stimuli by the model (Section 4), discussing
the results and concluding (Section 5).

2. CATEGORICAL PERCEPTION OF VOT

The voiced/unvoiced distinction is fundamental to speech
communication, playing a major contrastive réle in all lan-
guages. Assuch, it has received much attention in studies of
speech perception. In early work, Liberman et al [4] studied
the perception of voicing in syllable-initial stop consonants
as voice-onset time (VOT) was varied and showed it to be
‘categorical’. That is, perception changes abruptly from
‘voiced’ to ‘unvoiced’ as VOT is increased uniformly, and
discrimination is far better between categories than within
a category. Hence, labelling functions are non-uniform and
discrimination functions are non-monotonic. Intriguingly,
such categorical behaviour is also found for non-human lis-
teners [5)], indicating that the underlying mechanisms are
not specific — or ‘special’ - to speech.

Figure 1 shows labelling curves obtained by Kuhl and
Miller [5] for English speakers and for chinchillas in response
to bilabial (/ba-pa/), alveolar (/da-ta/) and velar (/ga-ka/)
stimuli in which VOT was varied. Taking the 50% points
as the boundaries between voiced and unvoiced categories,
there is a phoneme boundary-shift effect [6] with place of
articulation. Also, the chinchillas exhibit boundary values
not significantly different from the humans (although the
curves are less steep).

Various explanations have been put forward for the
observed categorisation including articulatory (‘motor the-
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Figure 1: Mean labelling functions for (English speaking)
human listeners and chinchillas obtained with (left to right)
bilabial, alveolar and velar synthetic stimuli: from Kuhl and
Miller [5]).

ory’), auditory and learning hypotheses. As cogently argued
by Rosen and Howell [7], however, none of them adequately
explain all the data.

In this paper, we use connectionist modelling to gain
insight into the issues involved in the controversy. The
model’s inputs are the stimuli initially synthesised by
Abramson and Lisker [8] which have been widely employed
in studies of speech CP. These are a series of bilabial, alveo-
lar and velar /Ca/ syllables, with VOT varying from 0 ms to
80 ms in 10 ms steps. Note that in order to achieve percep-
tually acceptable tokens, some adjustments to parameters
other than VOT were made during synthesis. Before com-
mencing this work, labelling functions like those in Fig. 1
were obtained for 5 adult listeners to check the validity of
the stimuli.

3. A COMPOSITE NEURAL MODEL

Ideally, any computational model of auditory processing
should simulate all necessary details of neural function and
anatomy at an appropriate level of abstraction. Unfortu-
nately, we have neither the neurobiological knowledge nor
the computer power to do so for the complete auditory sys-
tem. Sufficient is known of peripheral function, however,
to be able to construct models which mimic auditory nerve
firing patterns well. Here, we use the ‘P-D’ model of Pont
and Damper [9].
Figure 2 shows typical output (‘neurogram’) from this
model to the alveolar stimulus (/da/} with 0 ms VOT.
. A dot represents the firing of an auditory nerve fibre (a
‘spike’), with the horizontal axis indicating the time of firing
and the vertical axis indicating the centre frequency (CF) of
the fibre by an index in the range 1..128. All stimuli were
applied at time ¢ =0 at a simulated level of 65 dB SPL.
Activity before t = 0 is spontaneous, as is that in channels
with CF index 1..8 (for reasons to do with the bandwidth
of our auditory filters at low frequency). Fuller details are
given in [9] and [10].
Artificial neural networks represent, in some sense, an
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Figure 2: Neurogram response of the P-D auditory model
to alveolar stimulus (/da/) with 0 ms VOT.

attempt to model neurobiological function at a high level of
abstraction. This leads to the idea of a ‘composite’ neural
model in which a physiologically-realistic model of the au-
ditory periphery feeds its outputs to an ANN, acting as a
‘synthetic listener’. Two varieties of ANN have been used:

l. a feed-forward net (perceptron) trained in supervised
fashion by error reduction;

2. a competitive-learning (CL) net trained in unsuper-
vised fashion.

4. RESULTS

4.1. Supervised training

Initially, a multilayer perceptron (MLP) trained by error
back-propagation has been employed as the synthetic lis-
tener to label the patterns of neural firing activity from the
P-D auditory model, using the bp software of McClelland
and Rumelhart [11]. The neurogram data were presented to
the net as follows. Spikes were counted in a (12 x 16)-cell
analysis window stretching from —25 ms to 95 ms in 10 ms
steps in the time dimension and from 1 to 128 in steps of 8
in the CF dimension. One MLP was constructed for each
of the 3 stimulus series (bilabial, alveolar and velar). Each
had 12 x 16 =192 input units, a number of hidden units,
and a single output unit to act as a voiced/unvoiced detec-
tor. Each net was trained 5 times starting from different,
random, initial weights. The trained weight set selected for
testing was that for which the smallest number of training
epochs were necessary to reach the error criterion (0.005)
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Figure 3: Mean output activation versus VOT for MLPs
trained on neurograms from 0 ms and 80 ms endpoints.

on the presumption that this set is likely to have captured
the most direct internal representation.

As in the Kuhl and Miller study with chinchillas (which
had to be trained to respond appropriately to the stimuli),
the MLP was trained on 50 repetitions of the endpoint stim-
uli (0 and 80 ms VOT) and tested on 50 repetitions of the
intermediate values (10 ms to 70 ms in 10 ms steps). Be-
cause the P-D model simulates neural transduction at the
hair cells (a stochastic process) it is probabilistic in nature.
Hence, stimulus repetition produced non-identical neuro-
grams. Target outputs were 1 for the voiced (0 ms VOT)
stimuli and 0 for the unvoiced (80 ms VOT) stimuli.

Figure 3 shows the labelling function obtained by aver-
aging output activations over the 50 stimulus presentations.
In this case, there were 16 hidden units, but results were
insensitive to this number: essentially the same curves were
obtained with a single-layer perceptron.

Comparing with Fig. 1, the composite model’s responses
closely mimic those obtained from human and animal lis-
teners, even to the extent of replicating the shift of cate-
gory boundary with place of articulation seen in the original
studies. Thus, the model is clearly capturing the essence of
CP, but in some as yet unknown way.

To try to localise the site of the effects of categorisa-
tion and boundary shift, the P-D front-end with its hair-cell
transduction model and filter-bank modelled on neural tun-
ing data was substituted by a simple bark-spaced Fourier
(FFT) analysis. The ANN was then trained on the spectral
energy within the same time-frequency cells as previously.
Given the insensitivity of the earlier results to presence or
absence of a hidden layer, single-layer perceptrons (SLPs)
were used here. This reduced training times markedly. Fig-
ure 4 depicts the results.

These are dramatic. While CP (i.e. non-uniform la-
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Figure 4: Mean output activation versus VOT for SLPs
trained on filter-bank analysed stimuli.

belling and non-monotonic discrimination) are maintained,
the boundary shift is totally abolished.

4.2. Unsupervised training

The motivation for using unsupervised learning was several-
fold. First, CL nets [3] act as regularity detectors so, in
principle, allowing the features underlying the perception
of voicing to be explored. Second, the units are linear so
removing one of the least interesting possible causes of non-
uniformity in the model’s responses (see Section 5 below).
Further, it may be that is quite natural for ANNs trained
in supervised mode on the endpoints of a continuum to par-
tition the continnum in two about its centre. Such a ‘label
learning’ (or ‘anchor’) effect is indeed one of the classical
hypotheses of CP [12]. The CL paradigm offers the possibil-
ity of, at least, removing the labels. At this stage, however,
training has (for simplicity) used only the endpoint patterns
— those with the P-D model in place.

For consistency with the work using supervised (back-
propagation) training, the cl software of McClelland and
Rumelhart [11] has been used thus far. The ANN had
192 input units as before, fully connected via excitatory
links to an output cluster of just 2 mutually-inhibitory
(‘winner-take-all’) units (Fig. 5). In this configuration, the
net should act as a binary feature detector with one of the
output units detecting voicing and the other detecting its
absence. Unfortunately, training this network has proved
problematic: depending upon the initial, random weights,
one unit or the other captures all the input patterns when
learning stabilises.

We believe the most likely reason for this problem to
be the inflexibility of McClelland and Rumelhart’s software
which implements a single, global learning rate such that
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Figure 5: The competitive-learning net used had 192 input
units and 2 output units so as to act as a binary feature
detector. Connections are excitatory (+) between inputs
and output units, and inhibitory (—) between output units.

only the winning unit learns. The problem of one unit cap-
turing all input patterns is well documented in [3]. One
solution is the so-called leaky learning model which adapts
both the winning and losing units towards the input pat-
tern. This model is currently being implemented in our own
software, and results obtained with it will be presented at
the conference.

5. DISCUSSION AND CONCLUSIONS

The work with supervised training clearly shows that a dis-
sociation is possible between the ‘basic’ categorisation effect
and the boundary shift with place of articulation. While the
observed non-uniformity of labelling is insensitive to the de-
tails of peripheral auditory processing (i.e. to the presence
or absence of the P-D front-end) in the model, this is def-
initely not true of the boundary shift. This suggests that
either the hair-cell component or the precise auditory filter
time-frequency characteristics are crucial to the latter ef-
fect. Interestingly, Darling et al [13] have repeated some of
our earlier work whose results were summarised in Fig. 3.
They confirmed the non-uniform categorisation but failed
to find the boundary shift that we did. Our two implemen-
tations use identical stimuli and ANNs, but have a different
front-end auditory model. Thus, by comparison, it should
be possible to identify the exact component(s) of the P-
D front-end which account(s) for the boundary shift effect.
This comparison is proceeding.

The ‘basic’ CP effect (i.e. non-uniform labelling in this
work) seems less critically related to peripheral processing.
It could well be due to the inherent behaviour of the ANN it-
self. One possibility is that the non-uniformity reflects triv-
ially the non-linear (sigmoidal) activation function of the
output units. Harnad et al [14] have demonstrated that the
sort of categorisation observed here is a more or less natural
consequence of supervised training of non-linear networks.
Continuing work with unsupervised, competitive learning
should reveal the extent to which the model’s responses re-

flect real aspects of auditory processing.
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