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ABSTRACT

The Special Sensor Microwave/Imager (SSM/I) radiometer
is practical in monitoring snow conditions for its sensitive
response to the changes in snow properties. A single-
hidden-layer artificial neural network (ANN) was employed
to accomplish this remote sensing task, with radiometric
observations of brightness temperatures (Tb’s) as input
data, to derive information about snow. Error back-
propagation learning was applied to train the ANN. After
learning the mapping of SSM/I Tb's to snow classes, ANN
approach showed a significant promise for identifying
mountainous snow conditions. Error rates were 3% for
snow-free, 5% for dry snow, 9% for wet snow, and 0% for
refrozen snow, respectively. This study indicates the
potential of ANN supervised learning for the inversion of
snow conditions from SSM/I observations.  Further
improvement on the application of ANN for large-scale
snow monitoring can be expected by using more training
data derived from both plains and mountain regions.

1. INTRODUCTION

Snow cover is a main factor controlling the hydrological
response of watersheds in mid and high latitudes by which
it plays an important role in the global climate system.
Snow on the ground can be classified as either dry or wet
depending on whether it is below or at its melting
temperature. In order to determine where snow exists and
when snowmelt occurs, monitoring snow conditions
throughout the snow season is essential in snow hydrology.

The Special Sensor Microwave Imager (SSM/T) is
becoming an useful tool in monitoring snow conditions for
its sensitive response to the changes of snow physical and
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dielectric properties. In a dry snow layer, the radiation
emitted from background can be scattered on its way to the
surface by ice crystals. When snow is wet, the liquid
water held on the snow grains causes a significant increase
in volume absorption by which more radiation is re-
emitted. Thus, large-scale characterization of seasonal
snowpack conditions is possible through utilization of
SSM/IT observations.

The SSM/I is a seven-channel, four-frequency,
linearly polarized, passive microwave radiometric system.
To date, three of the seven SSM/I radiometers have been
launched on the Defense Meteorological Satellite Program
(DMSP) F-8, F-10, and F-11 satellites. The spatial
resolution or footprint of a SSM/I radiometer is defined as
the area on the ground scanned by the antenna main-lobe.
A SSM/I receives both vertically (V) and horizontally (H)
linearly polarized radiations at 19-, 37-, and 85-GHz and
vertical only at 22-GHz [1]. Hence, seven brightness
temperatures (Tb's), T19V, TI9H, T22V, T37V, T37H,
T85V, and T85H, are observed at each footprint.

Based on statistical analysis of SSM/I data, Neale et
al. [2] and McFarland and Neale [3] worked out a land-
surface-type (LST) classification scheme by using Tb
combination rules to identify dry, wet, and refrozen snow
over land. Fiore Jr. and Grody [4] developed a decision-
tree algorithm, using SSM/I Tb's at 19-, 37-, and 85-GHz,
for the global classification of snow cover over large
regions. However, these methods have limitations as
general approaches for complex terrain such as forested or
mountainous areas where microwave emission of SSM/I
footprint is extremely complex and nonlinear involving
many variables which are interconnected.

Recently, the use of artificial neural network (ANN)
approach to retrieve snow parameters from passive
microwave data has been well addressed [S], [6], [7].
Studies have shown that neural networks have the potential
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Fig. 1. Structure of the single-hidden-layer artificial neural network and its settings.

to learn Tb patterns whose complexity and nonlinearity
make retrieval accuracy of formal approaches uncertain.
Accordingly, the purpose of this study was to seek
the solution to the improvement of SSM/ snow
classification algorithm using neural network approach. In
this work, error back-propagation learning method was
applied to train a single-hidden-layer ANN. Training data
set of input/output pairs were prepared by matching SSM/I
data to the Soil Conservation Service (SCS) SNOTEL
(SNOwpack TELemetry) ground truth. By learning the
mapping of inputs (SSM/I Tb's) to outputs (snow
conditions), it is concluded that the ANN is able to classify
snow conditions with given input of SSM/I measurements.

2. METHODOLOGY

2.1. Design of ANN Structure

A neural network software by NeuralWare Inc. is
used to develop a single-hidden-layer ANN which is
suitable for training by the back-propagation algorithm.
The ANN consists of one input layer, one hidden layer,
and one output layer (Fig. 1). Each layer contains several
neurons, and neurons of adjacent layers are fully connected
with different weights.

In the input layer, the number of neurons is
determined by SSM/I Tb's. Since the increase in noise
level of both SSM/I 85-GHz channels on F-8 was observed
in 1988, five neurons in the input layer are needed for the
inputs of T19V, T19H, T22V, T37V, and T37H. For the
hidden layer, however, 10 neurons are chosen by
experiment. The four neurons in output layer are decided
by the number of snow classes, which are snow-free, dry
snow, wet snow, and refrozen snow. In addition, a bias
neuron, used as the same idea as incorporation of the
constant in a regression, is connected to hidden and output
layers.

In the ANN, the connection weights between the
layers are randomly initialized with a range around 0.1
before training.

2.2. Collection of Input and Output Pairs

The ANN designed in this study requires training in
a supervised learning mode. This mode of learning
assumes that when the input is applied, the desired output
is also provided. Thus, a set of SSM/I Tb's with
corresponding ground snow classifications is required for
the learning.

SSM/ and SNOTEL data, from Oct. 1, 1989 to Sep.
30, 1990, at mountainous areas in Utah were selected to
generate the input and output patterns. DMSP-F8 SSM/I
data, which contain the latitude/longitude (lat/lon)
coordinates of each footprint and corresponding Tb's, were
derived from the Naval Research Laboratory. SNOTEL
data of snow water equivalent (SWE), precipitation, and air
temperatures (i.e., maximum, mean, and minimum) were
provided by the SCS West National Technical Center.

Based on SNOTEL data, daily snow condition at
each station was classified as snow-free if SWE equaled to
zero, dry snow while SWE accumulated, and wet snow as
SWE decreased after the day of maximum SWE was
passed. While snow was wet, if the mean temperature was
below freezing point, the snow cover was classified as
refrozen. Categories of different snow conditions were
binary-coded as (1, 0, 0, 0) for snow-free, (0, 1, 0, 0) for
dry snow, (0, 0, 1, 0) for wet snow, and 0, 0, 0, 1) for
refrozen snow.

Both SSM/I and SNOTEL data files were merged by
first locating the snow data of which the lat/lon coordinates
were within a search radius of 15-kilometer of each SSM/I
footprint lat/lon coordinates, and then placing the
corresponding seven SSM/I Tb's along with matched
binary-coded snow conditions to create the database of
input and output pairs.

2.3. Selection of Training and Test Data Sets

In order to assure that the ANN was learned from
the correct classification patterns, discriminant analysis was
applied to examine the selected input and output pairs.
With the four known categories of snow condition, each
input of SSM/I Tb's was classified into one of the
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Table 1. Elements selected for the ANN
training and test.

Number of Elements in Data Set
Sow Condition

Training Test Total
Snow-free 200 76 276
Dry 200 163 363
Wet 200 49 249
Refrozen 200 | 102 302
Total 800 389 1190

categories. Mis-classified data of input and output pairs
were eliminated from each group. Accordingly, a data set
of prototype classification patterns was constructed for
ANN learning.

Training and test data sets were completely separated
from the prototype input and output patterns. The training
data set was designed to maximize the learning process.
Thus, the snow category with smaller size of pattern
elements was enlarged to about the size of the largest,
which was done by extrapolating certain inputs of SSM/I
Tb's within the Tb range of that category.

Consequently, an equal amount of elements was
randomly selected from each snow category to form the
training data set. Test data set was created by selecting the
remaining elements in each snow category. Table 1 shows
the elements prepared for the ANN.

2.4. Error Back-propagation Training

The main mechanism in a error back-propagation
training is first to allow inputs to flow forward through
hidden layer to output layer [8]. Inputs of the five Tb's are
scaled between -1 and 1. Scaled data are passed directly
as mapping outputs through connection weights from the
input layer to the hidden layer. However, each neuron in
the hidden layer and output layer decides its output by
calculating the net, which is the sum of all of its incoming
connection weights (w;) multiplied by the mapping outputs
(m;) from previous layer:

s-1
nets = Y m¥ W,
J

where S denotes the state of current layer. Then, the net
is transferred by the hyperbolic tangent (TanH) function to
give an mapping output between -1 and 1:

m® = f(net?®)
= (1 + f(net®)) (1 - f(net?®))
After calculating mapping outputs in the output layer, error
between desired output (d) and mapping output (m) for a

Table 2. LST approach used for snow classification
(from McFarland and Neale [3]).

Tb Snow Condition
Combination
Rule Dry Wet Refrozen
T22V - TI9V <4 >4 <4
(T1I9V+T37V)/2 - >4 > 938 >4
(T19H+T37H)/2
T37V >225 | >253 <225
<257 | €268

neuron is measured according to the delta learning rule:
1
2
Measured error is then propagated backward from layer to
layer to adjust connection weights using gradient descent
optimization method:

ES= 2(d°-m%)? = 2(d° f(net?))?

vES = -0E%/0w, = - (OE°/8m °) (8m 5/dw,)
b b

= -(d®- m*%) f'(net®) m5*

which changes the weight in a direction that minimizes the
error. Since there is no desired output for hidden layer, a
weighted sum of error gradients is propagated back from
output layer to each neuron in the hidden for error gradient
computation. Then, the gradient component for a weight
update is specified as:
aw; = -1 vE*S

where 7 is the learning rate, typically less than 1.0.
According to the experience [8], having a larger learning
rate at the hidden layer than that at the output layer can
decrease learning time. Learning rates are set at 0.30 for
hidden layer and 0.15 for output layer (Fig. 1). Once the
gradient component is found, each connection weight to the
output layer is updated by:

where t is the time when the weight is updated.

Training step, involving forward feeding neuron
outputs through layers and backward propagating errors for
weight adjustment, is repeated until a given threshold of
root-mean-square (RMS) error set up at 0.01 is reached.
2.5. ANN Test

After learning, the test data set was applied to
evaluate the ANN retrieval accuracy by calculating the
error rate (%) in each snow category. Tb combination
rules from LST (Table 2) were used to compare the
classification performances between the two approaches.
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Table 3. Performance comparison between
ANN and LST approaches.

Error Rate (%)
Snow Condition
ANN LST
Snow-free 3 3
Dry 5 14
Wet 9 100
Refrozen 0 100

3. RESULTS AND DISCUSSIONS

Error rates of both approaches (Table 3) show that the
ANN has a significant promise in identifying mountain
snow conditions. The worse performance of the LST
approach could be due to having evergreen forests and
snow cover at mountain ranges. As seen in Fig. 2, for
example, the 95% comparison intervals of SSM/I T37V
means among dry, wet, and refrozen snow are overlapped
by which there is no significant difference among the
means. Theocratically, vegetation overlaying snow cover
can affect passive microwave response of snow. As a
result, spring wet or refrozen snow cannot be interpreted
by LST snow rules (Table 2), which are developed only
based on data over plains with non-dense vegetation [3].

4. CONCLUSIONS

The problem restricted the use of LST classification
scheme to classify mountain snow cover in the form of
dry, wet or refrozen is presented. This study indicates the
potential of ANN supervised learning for the inversion of
snow conditions from SSM/I measurements. Further
improvement on the application of ANN for large-scale
snow monitoring can be expected by using input and
output pairs of training data derived from both plains and
mountain regions with additional input of vegetation index.
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