DISCRIMINATIVE METRIC DESIGN FOR PATTERN RECOGNITION

Hideyuki WATANABE, Tsuyoshi YAMAGUCHI, and Shigeru KATAGIRI

ATR Interpreting Telecommunications Research Laboratories
2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02, Japan
E-mail: watanabe@itl.atr.co.jp

ABSTRACT

This paper proposes a new approach, named Discrim-
inative Metric Design (DMD), to pattern recognition.
DMD optimizes discriminant functions with the Mini-
mum Classification Error/Generalized Probabilistic De-
scent method (MCE/GPD) such that intrinsic features
of each pattern class can be represented efficiently. Re-
sulting metrics accordingly lead to robust recognizers.
DMD is quite general. Several existing methods, such
as Learning Vector Quantization and the Continuous
Hidden Markov Model, are defined as its special cases.
The paper specially elaborates the DMD formulation
for the quadratic discriminant function, and clearly
demonstrates its utility in a speaker-independent Japa-
nese vowel recognition task.

1. INTRODUCTION

In most pattern recognizers, feature extraction is not
necessarily appropriately linked with the recognition
decision; this often complicates the over-learning prob-
lem or the robustness problem. In light of this, this
paper proposes a new method, named Discriminative
Metric Design (DMD), which allows one to alleviate
the problem by designing discriminant functions that
can effectively represent intrinsic features of its corre-
sponding class.

DMD is quite general and can be applied to various
types of recognizers as well as a wide range of recogni-
tion tasks. The paper is specifically devoted to DMD
implementation for a static (fixed-dimensional) pattern
recognizer using a fundamental, quadratic discriminant
function and its evaluation in a speaker-independent
Japanese five-vowel recognition task.

DMD relies on a recently-developed, general dis-
criminative learning methodology, the Minimum Clas-
sification Error/Generalized Probabilistic Descent meth-
od (MCE/GPD) [3, 4, 5]. It has been shown that
this MCE/GPD can be considered a more general ver-
sion of recent recognizer design algorithms including
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Learning Vector Quantization (LVQ) [4]. The develop-
ment of DMD greatly widens the scope with regard to
this relationship. In the paper, a discussion is made
on the relationship between DMD and several impor-
tant algorithms, such as LVQ, the Learning Subspace
Method (LSM) [7], Discriminative Feature Extraction
(DFE) [1], and an MCE/GPD-trained kernel function
recognizer [4].

2. DISCRIMINATIVE METRIC DESIGN

2.1. Statistical Pattern Recognition

Let us consider the problem of classifying a d-dimension-
al input pattern € R¢ into one of K classes {C,}X ;.
We assume that the dimensionality of the pattern is as
high as in many pattern recognition tasks. Our decision
rule is as follows:

C(z): C(z)=C; if i= a.rgm:ing,(a:), (1)
where C(z) : R% — {C,}K | is the recognition oper-
ation and g,(z) is the discriminant function that indi-
cates the degree to which z belongs to C,. The ulti-
mate goal here is to achieve discriminant functions that
can minimize the recognition error probability. In real-
ity, however, despite many approaches, achieving this
goal has been rather difficult due to the limited amount
of available resources such as design samples.

2.2. The Concept of the New Approach

In most cases, the discriminant function is simply based
on heuristics and on some kind of scientific knowledge
indirectly related to error minimization. Such functions
are never guaranteed to lead to a robust recognition
that is accurate over unknown samples. One way to
remedy this inadequacy is to design each discriminant
function so as to represent the intrinsic features of its
corresponding class efficiently.

Our solution, DMD, is illustrated in Fig. 1. DMD
forms an individual meiric for each class, and also de-
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signs this metric and its corresponding similarity mea-
sure consistently with the minimum error objective.
This design can consequently increase the design ro-
bustness: Each class membership is evaluated in its
corresponding class-feature space where features rel-
evant to recognition are emphasized and information
irrelevant to recognition is suppressed.

Metric of the
1-st Class R
Metric of the
X — 2ndClass [y,

|
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Figure 1: Pattern Recognizer Based on DMD

2.3. The definition of Metric

We define in this paper each class metric as the follow-
ing linear transformation £, from the original pattern
space X to the s-th class feature space Y,:

y, = L(x)=&,VTz (s=1,2,..,K) (2
@, = diag( 51 @s,2 - Ps,d ) (3)
V, = [vs1052 .- 054], V?V, =1, (4)

where the superscript T denotes the matrix transposi-
tion, diag( ) stands for the diagonal matrix, and I is the
identity matrix. Each V', forms the orthonormal base
of the s-th class feature space, and ¢, is the weight
that indicates the contribution to the axis {v,:}; so
the smaller the weight is, the less the component on
the corresponding axis can be utilized. Accordingly,
each parameter set (®,,V ;) comprises a feature space
intrinsic to each class C,.

The similarity measure on the linear-transformed
space ), can be arbitrarily specified. Then, we spe-
cially consider the case of using a Euclidean distance
measure on V,. Each discriminant function comes sim-
ply to a quadratic one (which is fundamental to many
pattern classifiers) as follows:

9(x;05) = |[|Ls(z) - »Cs("'s)nz
= (=z —r,)TV,QfVZ'(a: -r,) (5)
Ty = [r51 752 . Tsd ]T (6)
O, = {r,,®,V,}, (7N

where 1, represents the reference vector of class C,.

2.4. The Formulation of DMD

A key concept of DMD is to fully optimize the entire
metric of each discriminant function so that each class-
feature space can effectively and efficiently represent
each class identity which is essential for accurate recog-
nition. In the quadratic discriminant function case, the
DMD formalization is elaborated as shown in the fol-
lowing paragraph.

Similar to MCE/GPD, the adjustment (training)
mechanism of DMD is based on gradient search opti-
mization. Adjusting r, and &, is fairly easy. It can
be done in the same way as is done for the original
MCE/GPD. However, V, is difficult to adjust because
of its orthonormal constraint (VIV, = I). To over-
come this difficulty, V', is represented by the multipli-
cation of Jacobi-rotation matrices [2] as follows:

Vs =U1,2(051,2)U1,3(851,3) - Ua-1,d(05,4-1,4), )
(8

where the d x d matrix U, 4(8) (p < ¢) is an orthogo-
nal matrix such that entries (p,p) and (g, ¢) are cos#f,
entry (p,q) is sin 8, entry (g,p) is —sin#, and the other
entries are 1 on diagonal and 0 on non-diagonal. Note
here that the parameter set 8, = {f,,1,2...85,d4-1,4} does
not need to hold to the above constraint. This matrix
decomposition thus allows us to adjust V', through the
simple adjustment of 8,. Accordingly, for a design sam-
ple ; (€ Ci), the full DMD updating rule is completed
by using the chain rule of derivatives and is given as
follows:

O o= A+ ap) (9)
AP = 28 (ze; 00 D)y o(20; 0¢)

xW{=Dg(=D w=DT 0 (10)

o = oY+ Al (11)
Asog_? = —25152(%;@(t—l))Pk,a(zt;@(t_l))

T
xg{T w20 (i =1,2, .., d)(12)

3,4

60, = 6559 +n80), (13)
A6 = =28, (z; O D)py (20 OD)
T  (t-1
x z(") Ag’p’q)zst) (14)
ow, \ ¢ 2 T
t—1 — t-1 t—-1
Apd = (—ags,p"q) W (19)

(P= 1:2a'--1d— l;q = 2)3y'“)d;p < Q)x

where the suffix ¢t denotes the iteration step number
(t=1,2,..), & (> 0) is called the learning rate satisfy-
ing Y o, €t — coand Y e, € < 00, £ (x; @) (> 0) de-
notes the derivative (with respect to the misclassifica-
tion measure) of the smooth loss function (3], px,s(z; @)
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denotes the derivative (with respect to the s-th dis-
criminant function) of the misclassification measure [3]
satisfying px x > 0 and px; < 0 (j # k), and the other
variables are given by

(O = VO (16)
T
2 = v g —p{-V (17)
w® = V§°)TV§‘)
= [wﬁ’} wgg wg?,] (18)
W, = U;i2(8512)U1,3(0:1,3) - Ud-1,d(0s,a-1,d)-
(19)

The initial values of {05?,2,4} are all 0. Properties of the
updating convergence are discussed in [3].

3. EXPERIMENTS

To evaluate DMD, we conducted a five-class, fixed-
dimensional vowel pattern recognition experiment in
a speaker-independent mode. Vowel tokens were ex-
tracted from 520 isolated words spoken by 70 speakers
(36 males and 34 females), and digitized at a sampling
rate of 12 kHz. The center fragment of each vowel seg-
ment was selected using a 20 ms Hamming window and
converted into a recognizer input pattern consisting of
32 LPC cepstral coefficients. Note that each pattern
sample was a single frame cepstral vector.

Recognition error rates were computed by the fol-
lowing procedure:

Forn=1to5 {

Select 10 speakers randomly for unknown set
£2{") (about 1500 samples) from the whole set
1?2 of 70 speakers;

Let fl&") be the remained set of 60 speakers;
Form=1to5 {

Select 10 speakers randomly for
validation set 2{™™) (about 1500 samples)
from fl,(‘");

Let ﬂg"’m) be the remained design set of
50 speakers (about 7500 samples);

(n,m),
d

3

Train the recognizer @™™) using 2

Compute the error rate P™ of @)
for the validation set £2{"™);

}

Select.the best recognizer O™™") where
PG™) = ming, PS™;

Compute the error rate Pe(;') and P{2) of
©@(™™) for the design set .in"’m) and the
unknown set nf{‘""). respectively;

}

Compute the averaged error rate

P = (1/5) Yamy Pig) and Pou = (1/5) Tocy PR
for the design and unknown sets, respectively.

For comparison purposes, we also used three types
of recognizers: 1) a quadratic discriminant-based DMD
recognizer, 2) a Mahalanobis distance recognizer, and
3) multi-template (reference) LVQ recognizers [5]. The
LVQ system used the Euclidean distance for its dis-
criminant function. All of the parameters in the DMD-
based recognizer were initialized using the Mahalanobis
distance; i.e., in each class (s = 1,2, ..., K), 7_&0) was the
sample mean vector, VSO) was the set of eigenvectors
of the sample covariance matrix, and each (psoi) was the
inverse of the square root of the eigenvalue. ’

Table 1 summarizes the (averaged) recognition error
rates for these three systems. The DMD-based recog-
nizer achieved a higher recognition performance for un-
known patterns than the Mahalanobis distance-based
one or the LVQ-based ones. Moreover, interestingly,
the DMD-based system performed much better over
the unknown sets than did the LVQ system with several
templates, while the LVQ system performed best over
the design set. This result demonstrates that DMD
contributes toward increasing the robustness through
a suitable design of the class-feature space.

Table 1: Recognition error rates for a Japanese five-
vowel task

design set | unknown set
DMD 4.00% 10.84%
Mahalanobis-distance 8.66% 16.36%
LVQ (1 template) 10.71% 13.73%
LVQ (8 templates) | 5.48% 13.87%
LVQ (16 templates) 3.78% 14.76%

4. RELATIONSHIPS BETWEEN DMD AND
OTHER TECHNIQUES

The DMD implementation for the quadratic discrimi-
nant function has important implications for other rec-
ognizer design techniques.

Performing the well-known Principal Component
Analysis (PCA) in each class can be a simple solution
for finding each metric. In PCA, the eigenvectors asso-
ciated with the large eigenvalues of the sample covari-
ance matrix represent the intra-class statistical varia-
tion factors. To reduce the influence of such variation
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factors on recognition decisions, in other words, to nor-
malize this type of variation, each weighting parameter
©s i is usually set to the value of the parameter that is
inversely proportional to the i-th eigenvalue. The Ma-
halanobis distance that was used in the previous section
is equivalent to the case where the Euclidean distance
is used in each class-feature space. This PCA-based de-
sign, however, estimates the parameters of each class
independently and does not consider the influence of
different classes; this does not necessarily reduce the
recognition errors. This insufficiency has been demon-
strated in the experimental results above.

Recently, demonstrations have been made of con-
tinuous Gaussian HMM speech recognizers based on
MCE/GPD [6], which have achieved highly accurate
recognition results. In most of these applications, diag-
onal covariance matrices were used: the original GPD
adjustment rule was applicable only to this type of sim-
ple form matrix. In contrast, the DMD adjustment
rule enables the full adaptation of full covariance ma-
trices; this will improve the recognition performance
compared to usual mixture Gaussian HMMs with di-
agonal matrices which essentially correspond to multi-
template classifiers using a limited, simplified distance
measure.

It is obvious that the continuous HMM recognizer
is a general version of the RBF recognizer and the Like-
lihood Network recognizer [4]. Therefore, DMD also
enables the full adjustment of these types of Neural
Network-based systems.

The linear transformation considered in this paper
can be viewed as a feature extraction process. This
point reminds us of the close relation between DMD
and the DFE that jointly optimizes both the feature
extraction and classification processes for the purpose
of minimum error [1]. It is actually obvious that DFE
can be considered to be a special case of DMD. The
difference between these two is that DFE uses a com-
mon metric over all of the classes while DMD designs
an individual metric for each class.

DMD is also related to LSM in the sense that each
class possesses its own feature space [7]. However,
DMD is clearly distinct from LSM in several aspects.
For instance, LSM computes as a discriminant func-
tion an orthogonal projection onto each class feature
subspace, which restricts each input pattern to a mem-
ber of a linear space. This restriction is valid only for
scale-invariant patterns such as power spectra, and not
for patterns based on log spectra or linear prediction.
In contrast, DMD does not have this restriction, which
is indicative of its higher applicability. Another differ-
ence between these two methods is found in the way
they handle feature axes; LSM treats the set of axes as
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a sort of “template” of the corresponding class, while
DMD treats it as a metric, i.e., a mapping from the
original pattern space to each class-feature space.

5. CONCLUSION

This paper proposed a novel approach to pattern recog-
nition, named Discriminative Metric Design (DMD),
which fully designs the metric of each class discriminant
function in a manner consistent with recognition er-
ror minimization. The experimental results in a vowel
recognition task clearly demonstrated its high utility.
Moreover, a comparison study of the relationships be-
tween DMD and several other recognition methods pro-
vided quite a useful basis for future theoretical analy-
sis and a clear perspective on feature representation.
It is lastly worth noting that one can easily apply the
DMD formulation presented in this paper to dynamic
(variable-durational) patterns by using a state transi-
tion structure like an HMM.
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