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Abstract

Snakes, elastic nets and Kohonen networks are well known
algorithms which were developed in different contexts. However,
these algorithms share common features allowing us to ask what
is the relationship among them and suggesting their use in
problems which have traditionally been tackled by only one of
them. This paper addresses the problem of edge linking and
proposes a new class of non-linear recursive algorithms, based on
a general cost function, which includes snakes, Kohonen maps,
and elastic nets as special cases. This class provides an unified
framework for several existing algorithms in Pattern Recognition
and Active Contours and allows the design of new recursive
schemes.

1. Introduction

Edge linking is a basic operation in many image analysis and
computer vision systems. The goal of an edge linker can be stated
as follows: given a set of edge points, computed by some edge
detection algorithm, try to find a continuous path through these
points which approximates the object boundary. In general, this is
a hard task since the algorithm does not know the shape of the
object, or its pose, and it has to choose among several possible
paths, fill the gaps and eliminate spurious edges.

Edge linking shows a close resemblance with problems studied in
different contexts. e.g., the traveling salesman problem or data
ordering problems solved by auto-associative neural networks,
and coostrained clustering problems. Therefore, we can
legitimately ask whether the algorithms used to -solve these
problems (e.g., clastic nets and Kohonen maps) can be
successfully applied to edge linking.

In this paper, three recursive algorithms are considered: the snake
active contours proposed by Kass et al. in 87 (1] in the context of
shape analysis and two well known neural networks (the elastic
net [2] and the self-organizing feature map or Kohonen map [3])
proposed in different contexts. The snake is a deformable model
consisting of a set of units, each of them associated with a point in
the image, which are attracted in each iteration by image features
(e.g., edge points) and acted by internal (regularization) forces
which try to keep some coherence during the training process. The
shape of the snake model is randomly initialized and it is then
recursively modified through an iterative process until it reaches a
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final configuration and hopefully approximates the object
boundary.

Similar principles can also be found in the context of the elastic
nets proposed by Durbin et al. in 87 [2] and in the topological
map of patterns proposed by Kohonen in 82 [3]. In fact, both
algorithms also approximate the input data by a sequence of
points or weighting vectors, initialized with some configuration,
and then recursively updated using specific update rules.

Two basic questions are addressed in this paper: (i) what is the
relationship among these three algorithms ? (ii) can they be used
in the context of object linking ?

To answer the first question we show in this paper that the three
algorithms, with minor modifications, are special cases of a more
general update rule and solutions of a general optimization
problem. Therefore, we propose a new class of non-linear active
contour algorithms based on a general update law, which includes
snakes, Kohonen maps, and elastic nets as special cases. The
usefulness of this class of algorithms is twofold: it provides an
unified framework for several existing algorithms in Pattern
Recognition and Active Contours and allows the design of new
recursive schemes (e.g., hybrid schemes).

2. Previous Algorithms
Let us denote by p=x+jy the location of an edge point in an image,

and let P= {p(l),...,p(N)} ,p(n) € C, be the set of all edge points

detected in the image by some edge detection algorithm. The goal
of an edge linking operation is to approximate the edge points
contained in P by a 1D model consisting of an ordered set of units,

z, €C, k=1,...,M . For convenience, we assume that the model

units are organized in a complex vector z={z,,...,zp It

2.1 Snakes

One popular technique for object boundary detection which has
been extensively studied during these last seven years is the snake
active contour algorithm proposed by Kass et al. in [1]. The choice

of the snake shape, ze cM | is formulated as an nonlinear
optimization problem defined by the cost function, {4]

M
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where ¢U(d)=exp(—d/20'2), Il denotes the modulo operation

and A; is a MxM real, pentadiagonal, Toeplitz matrix. The

optimization of (1) is usually performed by using the steepest
descent algorithm,

t+l _ .t _
2 =z -yV,] @)

where v is the learning step and V, is the complex gradient

operator [5]. Using (1,2) we obtain a recursive update law for the
snake model [1]

M =2 —yAZ L, (3)

where  foyr =[ fory (Zy )i fne (M) 1T is a2  complex  vector

containing the external forces acting in each snake unit which are
samples of an external force field

f(2)= =53 (p-2) 050z~ pi2) @
S p

2.2 Elastic Nets

In 1987 Durbin and Willshaw introduced the elastic net concept to
find short routes for the traveling salesman problem (TSP) [2].
Unlike combinatorial methods which have traditionally been used
to solve this problem, elastic nets search the optimal solution in a
continuous space of trajectories using soft constraints. Elastic nets
have also been used in image analysis (e.g., in hand-printed digit
recognition [6]) and may also be interpreted as a deformable
model for object boundary extraction. In fact, if we replace the
cities of the TSP by edge points detected in an image, the elastic
net algorithm will try to link the detected points with a trajectory
of minimal length. Although edge linking and TSP seem similar,
there are however some significant differences: (i) one of the
goals of an edge linker is to discard spurious edges, while the TSP
problem assumes mnoiseless data, and therefore forces the
trajectory to visit all cities (even those which are far away); (ii)
edge linking usually penalizes long paths and high curvature
strokes, while in the TSP only the first constraint is considered.
These differences yield a different cost function [2],

=25A 2 S1op 3 -
I=2"A,z %bgéycah Pl) (5)

where A, is a regularization matrix similar to A (however, in

the TSP A, is chosen to be tridiagonal instead of pentadiagonal
allowing high curvature points). Applying the steepest descent

algorithm to (5), one obtains the recursion
+1

YA = Zt - YAenZ[ +'Yfet,xt (6)
which has the same structure as (3), but with the external force,
given by

_ a2
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In elastic nets, the structure of the external force field is more
complex than in snakes, (see eq. (4)) since the force applied to
each unit depends on the location of the remaining units. Elastic
nets can be therefore interpreted as a competitive learning
technique.

2.3 Kohonen Maps

Another iterative scheme which may also be used in the context of
edge linking is the topological map of patterns, proposed by
Kohonen in [3]. This technique has been used in a wide range of
problems, including TSP. In the case of unidimensional maps, the
relationship between Kohonen maps and snakes has already been
addressed by us in [7]. In fact, the Kohonen algorithm shares two
important features with snakes and elastic nets: (i) the three are
unsupervised learning techniques where the model units are
attracted toward the locations of the detected edges during the
training process, and (ii) they organize the model units into 1D
sequence, where neighboring units are usually near in the image.
In the context of object boundary detection, we shall assume that
the input patterns are the coordinates of 2D edge points, and the
Kohonen map is chosen to be a unidimensional set of units.

To train the Kohonen map, each input pattern is sequentially
presented to the network. For each pattern, the algorithm selects

the nearest unit, zy_, usually denoted by active cell, where

k,=arg m&n[p—zk] (8)

The network is then updated using the following rule!

t+1

A =Z;—Y(P"Z;) n=k, =B....k, +p ®

where B is the neighborhood radius and ¥ is the learning step as
before.

Alternatively, the network can be trained in a batch mode [7].
This can be accomplished by freezing the network state during a
whole epoch (i.e., during the presentation of all edge coordinates)
and performing the update of the contour units at the end of each
epoch. In this case, one also obtain an update law of the form,

2=z + Yexe a0
where the external force components are given byz,
k+B3
foxe(zi )= -z
ext( k) n={:—B pezl:l‘u (p k) (ll)

where P, < P denotes the set of input patterns which choose the n-

th unit as their nearest unit and B is the neighborhood radius as
before. The choice of the nearest unit creates a partition of the

Lin closed contour models, the first map unit is assumed to be

neighbor of the first.
2 strickly speaking, fext also accounts for regularization effects
since it depends on the contour configuration.
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complex plane mnto disjoint regions which are denoted Voronoi
cells [8]. Equations (10,11) can be interpreted as the minimization
of the cost function

I= 2 Z ZIP Zk| + Z ZIP Zkl
k=l a=k—B peP, k=l peP;
azk

by the steepest descent algorithm. We have split this cost function
into two parts to emphasize the existence of a regularization term
and an external potential, as in the previous algorithms.

(12)

3. Common Framework

This section presents a class of nonlinear recursive algorithms
which contains snakes, elastic nets and Kohonen maps as special
cases and allows the design of new recursive schemes. To
accomplish this goal we shall develop a common update rule
derived from a general cost function which has two terms: a
quadratic regularization term and a clustering term defined as a
weighted sum of the distances between input patterns and model
units, i.e

J—zHAz+Z§W (pXi(p)
= 22 ¢ (PXdy(p (13)

where z is the contour model, A is a real MxM matrix, di(p) is
the distance of pattern p€ P to the location of the k-th unit and
wi(p) is a weighting function. Cost function (13) can be

considered as an extension of the distortion measures used in
classic clustering and vector quantization methods (e.g., k-means,
or Lloyd-Max algorithm [8]) the difference being the use of
weighting factors and a quadratic regularization term.

Two hypothesis will be assumed in the sequel: i) the distance
between input patterns and model units is the squared Buclidean
metric
2
de(P)=lp~z (14)
ii) the weighting function of pattern p with respect to the k-th unit
depends on the distance from p to all units of the model

Wi (p)=fi(dp,...,dp)

and verifies a normalization condition wy(z,)=1.

(15)

Under these hypothesis, the cost function is completely specified
by matrix A and by the choice of the weighting functions. Let us
now derive an update law for the minimization of (13) by the
gradient algorithm.

Fact 1

The complex gradient of the cost function (13) with respect to Zy
is given by (see Appendix).

V.. d =’7(Az)m +23 (2 - P)Om(P) (16)
P

where

W (p)
8 (p)= wk<p>+2d<p> 2P

=1 ady (p) an

Replacing (16) in the expression of the gradient algorithm

l_z -’YAZt-f-’Y ext (18)

fext(zk)=2(P_Zk)'ak(P) (19)
p

which defines a class of nonlinear recursive schemes for
constrained clustering and edge linking. In order to define a new
algorithm belonging to this class all we have to do is to specify: i)
matrix A, which can be interpreted as a lowpass filtering

operation; and ii) the functions wy (p) which define the external

potential in (13) or the functions 9, (p) which define recursion
(18,19).

Comparing the cost functions of snakes, elastic nets and Kohonen
maps with (13), it can easily be shown that these algorithms are
special cases of recursion (18,19) and cost function (13) which are
obtained by a proper choice of w,(p) and 9,(p) as shown in

Table L.

wi (p) B (p)
Snakes 202 = bg(di) 0o (dy)
dy
M
0q(d
Elastic [ fog gl%(d i) Mc(_k)
Nets - 20" —5 E%(Cij)
dy =i
Kohonen | ! if [k—k|<B | I if [k—k,[<B
Maps 0 otherwise 0 otherwise

Table 1 - Weighting functions for snakes, elastic nets and
Kohonen maps

4. Interpretation

The external force field of the common framework (19) suggests
several interpretations, e.g., a physical interpretation: if we
assume that every input pattern, p € P, is connected with the k-th
unit by a spring with constant 9, (p) , the external force applied
on the k-th unit is the sum of all spring forces. Instead, using a
fuzzy termminology ¥, (p) can be interpreted as a degree of
membership of the pth pattern to the k-th unit.

Let us define attraction region of the k-th unit as the set of points
peC such that 8, (p) is greater than a given threshold. The

attraction region of the k-th unit can be interpreted as the locus of
input patterns which produce a significant contribution to the
external force applied to the unit.
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Figure 1 shows the attraction regions of the three algorithms using
a small contour model with six units. The attraction regions were

computed from the weights 9, (p) defined in Table I, assuming

that pattern p takes all possible values in the image and verifies
the condition 9, (p)>0.l.

It can be concluded from Fig. li that in snakes the attraction
regions are circles and they do not overlap except if the units are
close together. In this case, the same patterns can attract more
than one model unit making them collapse. In Kohonen maps, the
attraction regions are nonoverlaping Voronoi cells [8] which
define a partition of the image (see Fig. liii). Finally, the
attraction regions of elastic nets resemble the Voronoi cells of the
Kohonen maps (and they tend to the Voronoi cells as ¢ — 0) but
they have some overlap (see Fig. lii). The structure of the
attraction regions allows us to classify snakes as a local method
and elastic net and Kohonen maps as global.

Figure 1 - Attraction Regions in (i) Snakes: (i) Elastic Nets with
and (iii) Kohonen Maps

S. Experimental Results

Figure 2 shows the performance of the three algorithms in an
typical edge linking operation, allowing us to identify some of the
difficulties of each algorithm. Many of these difficulties can be
alleviated by the design of new recursive schemes in the scope of
the unified framework of section 2. A more comprehensive
evaluation of these algorithms will be presented in a forthcoming

paper.

Figure 2 - Edge linking with deformable models
i) initial contour configuration; final contour shape with ii)
snakes; iii) elastic nets and iv) Kohonen maps

6. Conclusion

This paper has presented an unified framework for edge linking
operations which includes snakes, elastic nets and Kohonen maps
as special cases. To design a new algorithm belonging to this
framework all we have to do is to define a regularization matrix
and a set of weighting functions which measure the influence of a
pattern on each of the model units. The choice of the weighting
functions is equivalent to the specification of the attraction
regions associated with each model unit which have a simple
geometrical interpretation. A detailed study of the experimental
performance of snakes, elastic nets and Kohonen maps will be
postponed to a forthcoming paper.

Finally, we note that the proposed framework is not restricted to
edge linking operations and can be used to study other Pattern
Recognition problems.

Appendix A - Proof of Fact 1

The complex gradient of (13) with respect to z, 1s

d [ » M
Vsz =dz_ z7Az+3, Y wi(p)X(p)

m p k=1 (AD

Using hypothesis (14, 15) the derivative of the inner sum is

d
dz_zwk(P)dk(P)=

m k
= YA (D)= i () + 3 Wi (p)——d (p)
-kkpdzm kP kdezmkP (A2)
. aw, (p) 94;(p) _
—Edk(p)§_adj(p) 3z +2(Zm p)wm(P) (A3)
_ _ awy (p)
=Yz p)(%dk(p)adm(p)+wm(p)) (Ad)

Replacing (A4) in (A1) we obtain (16, 17).
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