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ABSTRACT

A new signal estimation technique is introduced for
highly non-stationary signals. The system uses the
wavelet transform to extract time-frequency compo-
nents of the signal plus noise, followed by a radial basis
function neural network that adaptively estimates the
underlying signal. The method is applied to the visual
evoked potential (EP) signal, which is a transient signal
corrupted by the ongoing elctroencephalogram (EEG)
noise, with a signal-to-noise ratio often less than -6
dB. The proposed system gives good time-varying esti-
mates of the EP, while suppressing the on-going EEG.

1. INTRODUCTION

Traditionally the EP signal has been estimated by en-
semble averaging. This approach assumes that the
background EEG is random, and that the EP is time-
locked to the stimulus presentation and similar in both
latency and contour for every response. This estimate
requires hundreds of responses and also can discard
meaningful information [1], like latencies of peaks in a
single response. Other methods were developed where
a priori 2] and a posteriori [3] information about the
EEG was used to characterize the statistics of the noise.
The intense post processing makes these methods un-
suitable for real-time implementation.

Other adaptive methods were applied (e.g.[4]), us-
ing the LMS algorithm. These led to better results but
suffered from the high variability in the EEG noise,
thus leading to a poor attenuation of the noise. The
Fourier Transform was used to orthogonalize the data,
but results continued to show loss of signal components
in the early peaks.

According to deWeerd [5], the EP signal is a super-
position of a number of short duration components, oc-
curring at high frequency near the stimulus, and longer
and at lower frequency occurring further from the stim-
ulus. This analysis was done using a bandpass filter
bank with constant relative frequency, and it further
showed the time-frequency structure of the EP signal.
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This suggests the use of a transform localized in
time and frequency as a feature extraction tool. The
wavelet transform meets this description, and is well
suited for the analysis of transient signals with time-
varying spectra like the EP [6]. The discrete wavelet
transform (DWT) represents signals with temporally-
ordered coefficients in a time-frequency plane. Trevo
and Shensa {7] showed the advantages of using the
DWT to represent event-related potentials for signal
detection. Ghosh et al. [8] used the DWT efficiently as
a feature extraction tool for noisy transient underwater
acoustic signals.

The proposed system makes use of a neural network
that will learn and recognize the time-frequency com-
ponents of the EP while suppressing those of the EEG.
The neural network used will be introduced in the next
section.

2. METHODS

The wavelet transform of a signal z(t) is:

Wy =l o0 e e )

where ¥(t) is the mother wavelet, shifted by b and
dilated by a, to generate the different wavelets. The
mother wavelet can be chosen to generate an orthonor-
mal set of basis function, like the Daubechies’ discrete
wavelets [6], where ¢ and b are chosen as ¢ = 2" and
b = n-a. Therefore the DWT, when chosen as above,
can represent signals in a unique manner in a time-scale
plane, and allows the exact reconstruction of the orig-
inal signal. Also the wavelet coefficients, at any scale
(frequency), are a series that measures energy within
the bandwidth of that scale as a function of time, the
EP signals are studied from their DWT representation.

On the other hand, artificial neural networks (ANN)
have several properties that make them promising for
the automatic signal estimation and classification [8].
They can serve as adaptive classifiers that learn from
examples, thus, they do not require a good a priori
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mathematical model for the underlying signal charac-
teristics. This is advantageous since a comprehensive
characterization of EP signal is not available yet. The
network discussed in this paper is a radial basis func-
tion (RBF) neural network. RBF’s are a class of sin-
gle hidden layer feedforward networks in which radi-
ally symmetric basis functions are used as the acti-
vation functions for the hidden layer umits. If z, =
(zp1,2p2,- -, :va)T is the input vector to the RBF net-
work, then the output of the jth hidden node R;(z,),
and that of the ith output node fi(x,), are given by

fi(zp) = Z wi; Rj(zp) (2)
J

Ri(e) = & (Le=2i0) ©
gj

where R(.) is a radially symmetric function such as a
Gaussian, z; is the location of the jth centroid, where
each centroid is a kernel/hidden node, o; is a scalar
denoting the “width” of its receptive field and w;; is
the weight connecting the jth kernel/hidden node to
the ith output node. For the Gaussian RBF’s the width
o; is the standard deviation, so that we have

R;(zy) = e~ 1/20ep-s,1*/a%)

The system structure is illustrated by Figure 1.
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Figure 1: Overall diagram of the proposed system
showing the signal flowgraph.

The signal is wavelet transformed, leading to a time-
frequency representation vector itself fed to the ra-
dial basis neural network. The network should be first
trained to recognize the transformed EP and attenu-
ate EEG noise. The training is accomplished using as
training pairs: (EP + EEG, EP)’s and (EEG, 0)’s.

3. SIMULATION DATA

The data used to test the proposed system included
human 100 EEG and simulated EP’s which are gener-
ated using a raised cosine model for the components.
The amplitudes and latencies of these individual com-
ponents have the following values and statistics [3]:

Latency | Amplitude

Peak | Latency(ms) | St.Dev. (ms) m’
1 73.31 8.76 5.17

2 113.79 10.97 -12.42
3 166.40 5.72 -3.19
4 199.58 11.72 11.16

Table 1: Lower Checkerboard Latency Corrected Av-
erage Results at Electrode Cz. (subject 5)

To generate contaminated EP, human EEG noise
was added to each of the simulated EP’s, following the
additive noise model of the data. Figures 2 and 3 show
samples of the data used, along with the results of the
simulations.

4. SIMULATIONS

The set of simulations reported in this paper were ob-
tained using a 64-point data vector for each processed
signal, 4-tap Daubechies’ wavelets for the feature ex-
traction and for the signal reconstruction. The neural
network used has 64 neurons in the hidden layer, with
a standard deviation o = 1.0 selected after testing over
a range of values for o. The condition number of the
weight matrix is equal to 1, meaning that the operation
of the neural network is stable.

The performance of the neural network also de-
pends on the type of data it is trained on. Especially,
the capacity of the system to cancel EEG components
when they are the only ones present in the input, de-
pends on the training on EEG examples. A study of
the proportion of the EP plus EEG samples to EEG
only samples in the training set was conducted, and
the number 12 of EEG examples revealed to yield the
optimum results in terms of the performance criterea
defined below.

Figure 2 shows that proposed system gives a clean
estimate of the EP with an efficient cancellation of the
EEG noise. Also when only EEG noise is inputed to
the system reduces the output to zero, Figure 3. Figure
4 shows th bias introduced by the estimator when only
EP signals are processed.

The following quantities are introduced to quantify
the performance of this estimator:

The normalized minimum mean square error measures
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the error between the system output and the optimum
filter solution or desired output:

El(zr — w)%

NMMSE = Bl

(4)
The signal bias factor is a measure of the signal distor-
tion the system creates. It is the mean-square differ-
ence between the system output when the input is the
desired output and the desired output.

The BF is normalized by the desired signal power
and is given by

_ El(se — )’
=0 ®

The noise reduction factor is a measure of the sys-
tem’s ability to attenuate the noise. It is the output
power when noise only is input to the system.

E(yg,k)J

NRF =10- IOglo I:T’n%) (6)

where z is the system input (EEG +EP), y-system out-
put for z or s as input, s-signal only input, n-noise only
input, and yo-system output when n is the input.

It was found that the proposed system performs
better than ensemble averaging and the other men-
tioned methods, the NMSE has an average of 12.7 %,
the NRF average is -12 dB, and the bias factor is found
to around 0.06 %. These results were found with data
having a Signal-to-Noise Ratio of -5.61 dB. Also the
shifting of the peaks in the response has considerably
decreased but still existent. This can be contributed
to the fact that wavelet transform actually provides a
measure of the average energy in each time-frequency
bin, rather than a precise measure of the frequency re-
sponse at that particular time sample.

The time-frequency adaptive estimator addresses
the dimensionality of the mapping problem between
the noisy evoked potentials and the true response. The
estimator exploits the time-frequency distribution of
the signal, transforming it into a signal space which is
more localized and sparse reducing the dimensionality
of the problem and producing a better estimate.
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Figure 2: Samples of processing simulated EP signals
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Figure 3: Sample of processing EEG noise only.
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Figure 4: Sample of processing simulated EP signals
only (no EEG noise).
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