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ABSTRACT

A dynamic network of regularized Gaussian radial basis
functions (GaRBF) is described for the one-step prediction
of nonlinear, nonstationary autoregressive (NLAR) processes
governed by a smooth process map and a zero-mean, inde-
pendent additive disturbance process of bounded variance.
For N basis functions, both full-order and reduced-order
updating algorithms are introduced, having computational
complexities of © (N®) and O (N?), respectively, per time
step. Simulations on a 10,000 point, 8-bit quantized 64kbps
rate speech signal show that the proposed dynamic algo-
rithm has a prediction performance comparable and, in
some cases, superior to that of AT&T’s LMS-based speech
predictor designed for the ITU-T G.721 standard on the
32kbps ADPCM of speech. The results indicate that the
proposed dynamic regularized GaRBF predictor provides a
useful tradeoff between its minimal need for prior knowl-
edge of the speech data characteristics and its consequently
heavier computational burden.

i. INTRODUCTION

Recently there has been significant interest in applying non-
parametric regression techniques, such as kernel regression,
to the problem of nonlinear time series prediction. In the
usual context of minimum mean-square error (m.m.s.e.)
prediction, such “nonlinear” time series are those precisely
those that arise from non-Gaussian processes. A study of
the application of kernel regression to the general nonlin-
ear AR (NLAR) case can be found in [1}. Under the more
restrictive assumption of a nonlinear MA process that can
be described by a linear basis function expansion with ad-
ditive noise, {2] obtains correspondingly stronger results
for their algorithm’s convergence and consistency. In the
other direction under a similar model, [3] considers the
problem of nonparametric estimation for general Hilbert-
space-valued stochastic processes via empirical estimates of
the covariance and cross-covariance operators. Despite the
broad spectrum of these nonparametric methods, they all
share the underlying assumption that the process is (almost
surely) stationary in the strong sense, an assumption that is
often violated in real-world applications. The extension of
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these methods to nonstationary processes would, no doubt,
be a significant advance.

In this paper, we examine a particular class of non-
linear AR processes and show that the m.m.s.e. one-step
prediction problem for this class can be naturally formu-
lated as an ill-posed interpolation problem in the process
state space. Tikhonov regularization is then applied to yield
a Gaussian radial basis function (GaRBF) expansion that
approximates the desired regression function. Using results
from penalized least-squares (PLS) interpolation theory [4],
we discuss briefly how the regularization principle could be
justified in the context of stationary time series prediction.
This discussion then motivates the introduction of the dy-
namic regularized GaRBF predictor for the nonstationary
version of the NLAR process class. The proposed method
is compared with the AT&T IIR filter predictor, which uses
a nonlinear LMS training algorithm, specified for the ITU-
T G.721 standard 32kbps ADPCM. of speech data. The
simulation results show that the proposed dynamic regu-
larized GaRBF predictor can model the underlying nonsta-
tionarity and nonlinearity of the speech signal sufficiently
well to match and even exceed the performance of the stan-
dard AT&T predictor. While the flexible, nonparametric
nature of dynamic regularized GaRBF predictor naturally
demands more data and computational resources compared
with the highly optimized AT&T predictor, these results in-
dicate that the proposed approach is nevertheless effective
in problems characterized by weak prior knowledge of the
underlying process structure.

2. REGULARIZED PREDICTION OF
STATIONARY NLAR PROCESSES

Before we consider the nonstationary case, it is instructive
to consider the one-step prediction of the NLAR(p) process
{Xi}:2, described by

i=1

Xi = f(Xi-1) +e, t=12,... )
where x; = [zi Tie1 ... Ti—p41] can be considered the pro-
cess state vector at time instant i and the ¢; are disturbance
inputs with E[e;] = 0 and E [e?] < oo for every i. Note
that, by construction, the process state vector in (1) forms
a Markov chain in the state space RP. For now, we do not
place any other restrictions on the nature of the disturbance
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input process other than that it be independent of {X;}
and assume that the initial state Xo = [To & -1 ... T1-p)is
given. Given sample values of the process {xi}ﬁtl , We may
recast the prediction problem into one of interpolation in
the process state space by considering the set of ordered
pairs {(xi,zi+1)}/L,, i =1,2,..., N, that describes the de-
sired input-output relation of f : R? — R. Assuming that
f is a sufficiently smooth function, i.e., continuously differ-
entiable to some order as well as Lipschitz, a regularized
estimate of f is given by the GaRBF expansion

. N
Fu(x) & a6 (x—xi) = ¢TG(x) )

=1

where

G(x) = exp (~Ixlw/2) ,

and the coefficients in ¢ are computed from the one-step
interpolation condition

A
llxllw = [[Wx||

(G+M)e = y
G 2 [Gxi-x),
y = [inalll, @)

The particular choice of the set of Gaussian basis functions
¢ < {G (s — xi)}, can be explained with reference to a
priori assumptions on smoothness properties of f. What is
relevant is that if the x; are distinct and the norm-weighting
matrix W is non-singular, then so is the interpolation ma-
trix G, thus ensuring that ¢ in (3) is well-defined. For fur-
ther details on these and other technical aspects of RBF in-
terpolation theory, the interested reader is referred to [5, 6].

The estimate fn constructed according to (2) and (3) is
optimal in the sense that it minimizes the regularized cost
functional

N
He.e= Z |z.‘+1 -¢'G (x.-)|2 +Xc"Ge £ Hoe + AH,c

i=1

over ¢ € RY given the set of basis functions G. It is
clear that the regularization parameter A € R* balances
the usual sum-of-squared-prediction error over the sample
data against a G-weighted norm on ¢. Under suitable con-
ditions, this G-weighted norm is equivalent to a smooth-
ness measure over span(G) [4]. Hence A controls the degree
of smoothing introduced into the solution by the regular-
ization procedure; A = O corresponds to a standard least-
squares (LS) approximation with no smoothing of the sam-
ple data while A — oo corresponds to an oversmoothed
approximation.

At this point, one may question the utility of the addi-
tional regularizing term AH,c in H.c. It turns out, however,
that if we define the empirical total squared sample fitting
erTor as

N 2
YOEDPITCOEF ] @

and seek to min {E[T()\)] 1A € 'R,'*’}, where the expecta-
tion is taken over all possible realizations of the process

sample {X;}7'*!, under the condition that the ¢; are i.i.d.
then in all but degenerate cases the optimum values for A
are nonzero [4]. In this sense, regularized fitting is canoni-
cally better than standard least-squares fitting where A = 0.
This result formally verifies the intuition that given that
the model (1) specifies observations corrupted by additive
noise, the best policy is not to fit the given time series sam-
ple data {(x;, x.-+1)}f; , exactly if we wish to recover a good
estimate for f.

So far the discussion has centred on the properties of the
regularization parameter A as applied to data fitting. The
natural question then arises as to the relevance of minimiz-
ing E[T(\)] when one-step prediction is set as an interpola-
tion problem. The problem is that minimizing E[T(A)] over
the process sample {X .‘}f:’tl does not necessarily minimize
the m.m.s.e. prediction cost function

]

for the as yet unobserved process datum TNz, where the
expectation is now taken with respect to {X;};_t*. One im-
mediate answer to this question is intimately tied to the ex-
istence of a stationary distribution for the process at hand.
Note that this condition is stronger than the usual notion
of (strict) stationarity. Recall that when the disturbance
process {¢;} is ii.d., as is often assumed, and the map-
ping f is both Lipschitz and exponentially asymptotically
stable in the large about 0, the Markov chain described
in (1) is geometrically ergodic and hence has a stationary
distribution [7]. For this stationary case, if we consider the
probability of a large deviation in the prediction error for
the next process datum z 42, the probabilistic triangle in-
equality leads to
>4 }

Pr{
F(Xn41) + etz — fv (Xws1)

E “XN+2 —fn (Xn41)

Xni2 — Xns
Pr{ > 6}

) )
PI‘{ > §}+Pr{|cn+2| > 5}

Since only the first term depends on A in the regularization
procedure, it is sufficient to consider the Chebyshev bound

Pr{ > 5}

< E “f(xN+l) — v (Xn41) 2] /8 (5)

F(Xn41) — fv (Xnt1)

IA

F(Xn41) —~ fN (Xn41)

which requires only the joint distribution of the process up
to time N + 1 to compute. Roughly speaking, when f and
the disturbance process {¢;} are such that {X;} has a sta-
tionary distribution, the expectation on the r.h.s. of (5) is
closely approximated by E[T(A)]/N as N — oco. Therefore
selecting A to minimize E[T(A)] asymptotically minimizes
the probability of alarge deviation in the prediction error on
the next time step, i.e., the next time series datum outside
of the current process sample. The authors are currently
working on extending this interpretation to more general
cases. in which the existence of a stationary distribution
cannot be assumed.
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3. NONSTATIONARITY AND THE DYNAMIC
REGULARIZED GARBF PREDICTOR

When the process described in (1) is stationary, it is clear
that the statistical characteristics of the predictor function

fn are the same whether it was designed using the process
sample Sk 2 {x.}f::" or Sk4n 4 {x.}:‘::_::v, nk=1,2,...
On the other hand, many situations exist for which the dis-
turbance process {¢;} is not i.i.d. or f is not sufficiently well-
behaved to ensure the existence of a stationary distribution
for the process {X;}. In such cases, if we assume slowly
varying process statistics, the idea of dynamically updating
the GaRBF predictor periodically by recomputing the solu-
tion to (3) for Sn, Sn+1, ..., has some intuitive appeal. To
be more precise, the suggested prediction-update algorithm
is

1. given S = {z.}:‘:,fv , compute the GaRBF expansion
coefficients ¢ according to (3).

., o~ a7
2. predict Tre N1 = FN (Xk4N)-

3. when the actual zg4n41 becomes available, update
the interpolation matrix G according to Si41.

4. with the updated G, compute the new value of ¢ ac-
cording to (3). Together with the new set of GaRBF

expansion centres Sk41, the updated function fN is
defined according to (2).

5. repeat from step 2 with k = k + 1.

A few comments are in order here. In step 4, a full ma-
trix inversion of the updated G + Al is not necessary if the
change to G is restricted to updating only those elements
which are related to the zi being replaced, as described in
step 3. With such a small rank change in G, the matrix
inversion lemma may be applied to reduce the computa-
tional requirements for the new ¢ from O (N 3) to O (N 2) .
Indeed, the simulation results for both full and partial up-
dating of G in step 3 of the dynamic GaRBF predictor show
that such an incremental approach to its evolution is a vi-
able tradeoff between the algorithm’s computational load
and its performance for processes of slow statistical varia-
tion. Note also that while we have limited the resources
used in the GaRBF predictor to N basis functions, we have
not otherwise constrained the choice of A and norm weight-
ing matrix W; in practice, we have found that W recur-
sively estimated from the empirical covariance matrix of the
process sample and a sufficiently small A provide reasonable
results when N is adequately large [4]. Of course, if N is
very small, say less than ten, then the performance is corre-
spondingly more sensitive to truly optimal choices of A and
W in the algorithm.

4. SIMULATION RESULTS

The proposed dynamic regularized GaRBF predictor is ap-
plied to a 10,000 point speech sample and compared with
the G.721 standard AT&T IIR filter predictor trained ac-
cording to a nonlinear LMS algorithm. The speech data,
which appear to have no discernible noise, are a male voice
sampled at 8kHz and 8bits per sample while speaking the

[ GaRBF parameters | SNR (dB) | dB/AT&T ||

N=10,p=50 9.869 -0.0958
N =10, p =100 9.955 -0.0102
N =20, p=50 10.35 0.3804
N =20, p = 100 10.63 0.7150
N =50, p=50 9.887 20.0774
N =50, p =100 11.48 1.5113
N =100, p=2 9.742 -0.2234
N=100,p=5 11.48 15115
N =100, p = 10 13.10 3.1372
N =100, p= 50 14.37 1.4081
N =100, p = 100 13.73 3.7664
AT&T pred. 10.01 0

Table 1: GaRBF predictor (full update algorithm) results
for 10,000 point speech waveform

[ Window (250 pts.) | SNR (dB) | dB/AT&T
1 12.82 -0.52
2 11.93 2.36
3 12.62 4.64
4 21.09 8.33
Over all 1000 pts. 12.64 3.00
Segmental SNR 14.61 3.70

Table 2: GaRBF predictor (partial update algorithm) re-
sults for N = 100, p = 50, A = 0.01

fragment “When recording audio data ...”. Before process-
ing, the speech data were approximately recentred to zero-
mean and normalized to unit total amplitude range. Table 1
gives the absolute and relative SNR for the two predictors
over the speech sample, where “noise” in this case refers to
prediction error. Only results for which the GaRBF predic-
tor exhibited comparable or better performance than the
AT&T predictor are included. In all cases, the GaRBF
predictor is designed with A = 0.01 and diagonal W ! uni-
formly set to the trace of the process sample’s empirical co-
variance matrix at each time step, as these choices appeared
to yield reasonable figures in some preliminary simulations.
Note that this choice of updating W leads to a full-rank
change in G at every time step, implying that the results
have complexity O (N 3).

For the same data, Figures 1 and 2 show, over 30ms
windows, how the N = 100, p = 50, A = 0.01 GaRBF pre-
dictor apparently captures the dynamics of both the slowly
and quickly varying portions of the speech sample. The cor-
responding segmental SNR (SEGSNR) and total SNR for
these and the subsequent two windows are compared with
those of the AT&T predictor in Table 2. In this case, the
updated norm weighting matrix W at each time step is used
only in calculations involving the newest datum zx4n41 in
step 3 of the dynamic regularized GaRBF predictor algo-
rithm; this induces only a partial update to the interpola-
tion matrix G at each time step and so allows the matrix
inversion lemma to be exploited as mentioned previously,
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Figure 1: Proposed predictor performance over 1st window
of 250 points ( -’ is predicted, ’--’ is actual)

resulting in an O (N 2) complexity. Experience shows that
the decrease in the prediction performance between the al-
gorithm using partial versus full updates to G is acceptable.
Nevertheless, care must be taken in implementing the par-
tial updating scheme to avoid the accumulation of round-off
errors and the possibility of ill-conditioning in (G + AI)~*
as it is propagated from time step to time step; failure to
do so can lead to seemingly discontinuous outputs from the
predictor. The authors conjecture that these numerical pre-
cision difficulties can be alleviated by the judicious develop-
ment of equivalents to square-root filters and their related
counterparts in the linear case.

From these results, one sees that without any voice-
specific prior knowledge or optimizations, the proposed dy-
namic regularized GaRBF predictor can attain or surpass
the performance offered by the AT&T predictor. As may be
expected, the results demonstrate the existence of a trade-
off between the number of basis functions N and the pre-
dictor memory p required to obtain a given level of per-
formance. With sufficiently high memory, e.g., p = 100,
the GaRBF predictor with as few as ten basis functions
can match the performance of the AT&T speech predic-
tor. On the other hand, with a sufficient number of basis
functions, e.g., N = 100, the proposed predictor need only
have a memory of two to provide performance comparable
to that of the AT&T predictor. The set of results with
one hundred basis functions and memory greater than five,
despite being computationally burdensome, is included to
show that the proposed GaRBF predictor’s parameteriza-
tion is flexible enough to model the underlying dynamics
of the test speech signal to a degree not possible with the
simpler AT&T speech predictor. The results also suggest
that there is room for non-trivial improvement in the per-
formance of the AT&T predictor.

5. CONCLUSIONS

Applying the principles of regularized fitting, in this paper
we have described a nonparametric predictor based on a
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Figure 2: Proposed predictor performance over 2nd window
of 250 points ( -’ is predicted, --’ is actual)

Gaussian basis function expansion for a general class of non-
linear AR processes. The relevance of regularization to the
one-step prediction of such NLAR processes is examined for
the stationary case. In the nonstationary case, an algorithm
for dynamically updating the GaRBF predictor is described
and shown to meet or exceed the performance of the AT&T
standard speech predictor when tested on a 10,000 sample
speech waveform. Although there is, of course, a complexity
tradeoff between the amount of prior knowledge embedded
in the AT&T predictor and the nonparametric nature of
the dynamic regularized GaRBF predictor, the results indi-
cate that the proposed predictor can be a viable base upon
which further speech-specific optimizations may be applied
to achieve significant gains in predictor performance.
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