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ABSTRACT

Based on the habituation mechanism found in biologi-
cal neural systems, novel dynamic neural networks are pro-
posed for recognizing temporal patterns. The specific task
considered in this paper is the classification of whale songs
from passive SONAR data, but the networks are also readily
applicable to other temporal pattern recognition problems.
The fact that the networks designed operate dynamically
is important, because it makes the goal of real time data
analysis possible.

1. INTRODUCTION

For temporal data, static neural networks, such as the MLP,
are untenable because they can produce only a fixed map-
ping between their current inputs and outputs regardless
of the surrounding temporal context. The most common
way to recognize a temporal pattern with such a network is
to expand the input vector to contain a temporal window
which is large enough to include most of the contextual clues
needed to recognize each pattern. This type of network
is referred to as a time delay neural network (TDNN)[1].
Unfortunately, TDNNs are often unsuitable when a long
temporal window is required or the window is of variable
length.

While studying biological phenomena that can encode
temporal information, we encountered a particularly sim-
ple and well understood phenomenon known as habituation.
Primarily, habituation is a means by which biological neural
systems ignore repetitive, irrelevant stimuli; but aside from
this primary function, it has also been suggested to be a
means of encoding temporal information [2]. Researchers
in neurophysiology have developed mathematical models of
habituation [3] [4] [5]. From the model cited in [3], we have
designed preprocessing units for use in a spatio-temporal
classification network. The model equation is shown as fol-
lows:

Wit +1) = W;(#) + ri(a: (3 - Wi(2)) - Wi (1) i(1)) (1)

Here, Wi(t) is the preprocessed input at time ¢, and I;(2),
the unpreprocessed input. In [3] Wi(t) represents a synaptic
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strength, and Ii(t) the activity of the presynaptic neuron,
but because our designs use habituation as a preprocessing
step, the variables are redefined accordingly. The parame-
ters, 7 and o, affect the rate at which habituation occurs,
thereby determining the temporal resolution and range of
the information obtained.

2. MATHEMATICAL ANALYSIS

It is the purpose of this section to develop insight into what
type of information is encoded by habituation. Due to the
fact that habituation is nonlinear, it may be very difficult to
analyze for a wide range of inputs. For this reason we will
concentrate on the ability of habituation to encode infor-
mation about a simple pulse function input. We will later
show that even with this simplistic assumption, useful prop-
erties of habituation can be derived. The input function to
be used is defined by the following equation.

_ 1 iftoSt<to+At
1(t) = { K otherwise (2)

The habituation value, W(t), is assumed to have reached an
equilibrium value prior to the start of the pulse at ¢t = to.
The consequences of this assumption will be discussed in
detail later.

From Equation 1 it is simple to determine the equilib-
rium value of W(t) when I(¢) = K Vt.

K__®
Weq—a-{—K (3)

If to is assumed to be large, then W(to) ~ WZX. In the
following equation, Equation 1 is expanded to get W{to +
At) in terms of W (to).

W(to+ At) = Ifh(to + At—1)W(to) +
At—1
ar ¥ Do lto+8t—1)  (4)
=0

Here the term I}, (2) is simply a notational shorthand which
is used to make the equations simpler and easier to read. It
is defined by the following two equations.

t

Ga)= [[ (-er-ri() (5)

i=t—x+41
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Rap(t) =1 (6)

Substituting Equation 2 and Equation 3 into Equation
4 yields a simplified form for W(ts + At).

W(to + At) = Wl + (WE — Wi )42 (7)

¢=1—-ar—r (8)

It is important to notice that some error is introduced here
by assuming that W(to) is equal to ng . This error ap-
proaches zero as to approaches infinity with I(t) = K for
a long time prior to to. This assumption means that some
of the conclusions which may be drawn from Equation 7
cannot be generalized to inputs which have multiple pulses
without introducing some error.

It is apparent that W}, < W(t + At) < We’g so long
as ar + 7 < 1. When this additional restriction is placed
on o and r an interesting definition can be made. Let A
be the ratio between the decrease in W(t) due to the pulse
and the range of W(t).

W:g - W(to + At) =1

at
- 9
Ar WE Wi, ¢ (9)

i

We can also determine the half-life of habituation, Hy.
This is the pulse length required to achieve A; = .5; that is
to decrease W (t) by half its range.

—log 2
log ¢

So far we have determined that so long as ar + 1 <1,
the values of W{(t) produced in response to the input pulse
are bounded between Wg'q( and Welq. Initially for ¢ < o,
W (t) is assumed to be equal to W.S. During the pulse it
decays geometrically with rate, ¢, toward the Welq asymp-
tote. The longer the pulse the closer W(t) approaches its
lower bound at W/,. Values of W(t) for to < t < to+At can
be calculated by substituting t — to into Equation 7 in place
of At. In order to calculate W(t) for all values of ¢, the only
remaining step is to determine W(t) for t > # + At. By
substituting Equation 7 into Equation 4 the following equa-
tion for W(to + At + i) can be determined for all positive
integer values of i.

(10)

h =

W(to + At +i) = WE — (WE —W(t + At))gk  (11)

¢K=i—ar—rK (12)

Another value of interest is Hy, the halflife of dishabit-
uation. This is the amount of time required, after the pulse
has passed, for W (t) to rebound halfway back to its original
equilibrium value, ng .

Wito) + W(to + At)
2

W(to + At + Hy) = (13)

By making use of Equations 4 and 7 and simplifying,
the following equation can be derived for H.

(14)

The values, Hq and A, are important because they can be
used along with the current habituation value to determine
how long ago the last input pulse was observed.

. log(W:g —Wi(to + At +1)) — Iog(WeI; - Wclq) —log Af
1 =
logx
(15)

This equation, however, can only be used if K is a con-
stant known value and At is a known value. The latter
assumption can be relaxed if Ay ~ 1, i. e. when At is
sufficiently large. Then the time of occurrence of any pulse
with At > Atpin can be estimated by leaving out the log Ar
term in Equation 15. If the value of K varies, for example
due to background noise, then the value Hq becomes im-
portant in determining the error in estimating i due to the
variation in K. For large values of t the error in estimating i
becomes large because the log(WX — W(to + At + 1)) term
approaches —co and any variation in WX becomes more
and more important.

Aslong as K is constant, i can be approximated without
knowledge of A; or At. The approximation for i is given in
Equation 16, and Equation 17 gives the maximum possible
error in the approximation.

log(Wig — W (to + At +1)) — log(WX — W2)

i ferp = log¢x
(16)
S . log(WegX — W(to 4+ Atimin))
lerr = tapp — 1 log ¢K —_
log (WS — W) (17)
log ¢ x

Desired values of A7, Hyq, and Atmin can be used to calcu-
late a and .

Obviously, there are some limitations in the single ha-
bituator model. The amount of information which is ob-
tainable for even a simple pulse input model is limited to
the time of the most recent pulse. Even this small amount
of information can be powerful, however. For example sup-
pose each input presented to a habituated MLP is an indica-
tion of the occurrence of some specific feature in the signal.
With the single habituator model the most recent time of
occurrence of each input feature can be determined. The
order in which these features were observed can, of course,
also be determined. The habituated MLP does not have
as much local temporal information about its inputs as a
TDNN, but at the same time it does not have hard limits
on the length of its memory. Still the amount of tempo-
ral information encodable by a single habituator is limited.
In order to overcome this limitation it is necessary to use
multiple habituators for each input.

When using multiple habituators, it is difficult to ana-
lytically determine input information from habituation val-
ues, because of the necessity of solving simultaneous non-
linear equations. However, it is relatively simple to show
that information is gained by using two habituators. Once
again, we will consider the same single pulse input model
given in Equation 2. With two habituators it is possible to
determine the length of a pulse, At, along with the time
at which it occurred. First 1 is calculated from one of the
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habituators by using Equation 16 and thus taking the ap-
proximation Ay = 1. The a and r parameters for the first
habituation unit must be chosen so that this approximation
is valid for some A#min, which is less than the pulse lengths
in which we are interested. If arbitrary pulse lengths are
desired take Atmin = 1. Once we have i we can determine
Ajp for the second habituator and then At as follows.

WE —W(to + At +1)

Ay = -
1S TG WE — W) (18)
_log(1 - Af)
A= EL (19)

Several conclusions can be drawn from this analysis. For
one thing habituation does encode some temporal informa-
tion. Also it seems that habituation is particularly good at
encoding the time of occurrence of the most recent input
pulse. Such information can in fact be encoded using only
a single habituator for each input. This kind of informa-
tion is particularly useful if each input is an indicator of
the occurrence of a particular event or feature. A single
habituation unit per input system can encode the order of
occurrence of the most recent examples of each such fea-
ture. A TDNN could not encode such information unless
all of the features in question occurred within the time win-
dow of the TDNN. The fact that habituation can also pro-
vide temporal information for less restricted forms of inputs
is demonstrated empirically in the following section. It is,
however, interesting to note that the minke whale song data
set is also somewhat pulselike in nature. Certainly habitua-
tion can outperform TDNNs in situations where the inputs
are constant for a large number of presentations, because
the habituation values can contain information about the
input before the string of constant values, but a finite win-
dow length TDNN cannot. With the habituation unit such
information decays to zero over time, but with a TDNN it
goes to zero as soon as the TDNNs time window is filled
with constant inputs.

3. EXPERIMENTAL RESULTS

In order to ascertain the usefulness of habituation as a
means of encoding temporal information, several experi-
ments are performed using various habituated and unhab-
ituated MLPs and TDNNs. The experiments performed
utilize two different data sets. One of these sets consists of
four different minke whale songs. The other contains two
types of whale cries and two types of porpoise whistles. For
conciseness, the minke whale data set is referred to as data
set 1 (DS1) and the other set is called data set 2 (DS2).
Table 1 lists the number of signals per class for the training
and test subsets of each data set. Table 2 lists the average
number of feature vectors per signal for each signal class.
Each feature vector is 8 dimensional and denotes signal en-
ergy in 8 frequency bands [6]. The classes 1-4 in data set
1 are obviously not the same as the classes 1-4 in data set
2, but the have been tabulated as if they were, in order to
create compact tables.

Our investigation demonstrates that MLPs and TDNNs
with habituation preprocessing units outperform unhabitu-
ated TDNNSs of similar complexity on the data sets exam-

Table 1: Number of Instances of Each Signal Type
Class I I | 1r| v
DS1 train set || 5 5 5 5
DS1 test set 10 | 10 | 10 | 10
DS2 train set {| 5 5 3 3
DS2 test set 5 5 3 2

Table 2: Average Number of Feature Vectors Per Signal
Class I 11 I | 1Iv
DS1 train set || 242 | 182 | 254 | 187
DS1 test set 233 | 177 | 254 | 174
DS2 train set || 76 61 70 63
DS2 test set 67 65 82 85

ined. A typical result is shown in Figure 1, where the per-
cent correctly classified for four different networks is plotted
as a function of the number of hidden units. The experi-
mental networks shown are the HTDNN, a TDNN with
habituation preprocessing, and the HMLP, an MLP with
habituation preprocessing. A TDNN and an MLP without
habituation preprocessing are also shown for comparison.
Each TDNN shown had a five sample time window. The
results were generated using DS2. The results for DS1 were
similar, with the habituated MLP outperforming the un-
habituated MLP and TDNN, by 34 percent and 11 percent
respectively. All results were determined after the presen-
tation of each new input feature vector rather than at the
end of each signal.
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Figure 1: Comparison of Habituated and Unhabituated
Networks

In our experiments the parameters o; and 7; are set to
constant values such that a; = A and = = T for all inputs,
I;. The habitnated networks achieve peak performance
within a narrow range of T values. However, the depen-
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dence on A is not as significant, and habituated networks
consistently outperform networks without habituation for
a wide range of values of A and T. Figure 2 demonstrates
the effect that varying T has on the mean square error of a
habituated MLP on DS2. Figure 3 demonstrates the effect
of varying A. The mean square error for an unhabituated
MLP on the same data set is 0.135. The MSE for an un-
habituated TDNN with a five sample time window is 0.083.
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Figure 2: Performance of HMLP with varying T and A=0.2
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Figure 3: Performance of HMLP with varying A and
T=0.05

For a more detailed account of the experiments per-
formed see [7].

4. CONCLUSIONS

The theoretical analysis presented demonstrates that ha-
bituation can encode meaningful temporal information for
simple types of input. Specifically, the order of last occur-
rence of a set of Boolean events can be established with
a single habitnator per input network. Empirically, single
habituation unit per input networks are shown to outper-
form unhabituated MLPs and TDNNs for the two sonar
data sets examined. Neither of these data sets is limited
to Boolean events, so the range of inputs for which habit-
uation is useful is obviously not limited to the simple case
which is analyzed.

The habituated MLP and TDNN dramatically outper-
form the unhabituated MLP and TDNN for the data sets
examined. The habituated MLPs have two major advan-
tages over unhabituated TDNNs. First, they have access to
long term information which TDNNs do not. Secondly, they
have fewer trainable parameters. For data sets in which long
term temporal information is unnecessary, the primary ad-
vantage of habituated MLPs is lost. Even in this case, how-
ever, habituation can be used to advantage. Because of the
reduction in complexity for habituation as compared to time
windowing, a habituated TDNN may be designed with sim-
ilar performance and less complexity than an unhabituated
TDNN. The reduction in complexity is important because
it results in faster training and better generalization.
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