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ABSTRACT

This paper examines the mechanism by which Recurrent
Neural Networks (RNNs) acheive equalization whilst oper-
ating on simple digital communication channels. The mode
of operation is seen to be essentially similar to the conven-
tional Decision Feedback Equalizer (DFE) and the RNN
node nonlinearity is identified as a limiting factor. Two
versions of an alternative RNN structure are formulated
for channels with longer impulse responses based on soft-
decision feedback. Simulations demonstrate the improved
BER performance compared with the DFE.

1. INTRODUCTION

Recently a number of neural network structures have been
applied to the problem of equalization of digital communi-
cation channels. The benefit of neural networks in this area
lies in their pattern classification abilities which are used to
distinguish between a finite set of transmitted symbols ar-
riving at the receiver in a corrupted state. The corruption
is primarily due to intersymbol interference and additive
noise occuring in the communication channel. This con-
trasts with the more traditional method of treating equal-
ization as an inverse filtering problem rather then a classi-
fication problem.

A number of network structures have been proposed:
the Multilayer Perceptron (MLP) [1], the Radial Basis Func-
tion network (RBF) [2] and, more recently, the Recurrent
Neural Network (RNN) [3]. Each network uses node non-
linearities to form nonlinear decision boundaries in order
to differentiate between the transmitted symbols. Chen
et al. [2] implement the optimal symbol-by-symbol equal-
izer, a maximum a posteriori (MAP) detector, as an RBF
network with the node nonlinearities matching the chan-
nel noise probability density function. Kechriotis et al. [3]
apply an RNN with a hyperbolic tangent nonlinearity to
equalize linear and nonlinear channels.

This paper examines the mechanism by which simple
RNN equalizers achieve equalization and identifies the node
nonlinearity as a limiting factor. An improved RNN struc-
ture is formulated and compared with alternative equalizer
structures.

The RNN structure is shown in Fig. 1 and consists of
a delay line and a fully interconnected set of nodes. Each
node forms a weighted sum of its inputs, the activation,
and passes this signal through a hyperbolic tangent non-
linearity to produce the node output. The input to the
network is the sampled received signal and both the delay
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lines and the feedback paths between nodes have delay ele-
ments equal to the transmitted symbol period. The output
of one node is designated as the network output and this is
passed to a decision device for classification. The outputs of
the remainder of the nodes are not defined to perform any
explicit function. The network is adapted using the Real-
Time Recurrent Learning {(RTRL) algorithm [4] which is a
gradient-descent based algorithm, the error surface being
formed from the instantaneous square error between the
network output and the transmitted symbol. This error
definition is suitable for PAM/QAM transmission schemes
where the network output estimates the symbol amplitude.
The training algorithm requires a training sequence to be
transmitted during adaption of the network and attempts
to minimise the squared error of the network output node.
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Figure 1: Structure of the Recurrent Neural Network equal-
izer.

2. SINGLE NODE DYNAMICS

Initial simulations of the RNN equalizer operating on a 2
path stationary channel conveying binary PAM data showed
that the RTRL algorithm reduced the network to a single
node structure using one received sample {from the input de-
lay line and a self-feedback term. This structure (Fig. 2) is
effectively a nonlinear IIR filter which can exhibit a variety
of dynamics dependent on the 2 node weights, w, and ws.
After a step input, the RNN reaches an equilibrium state
when

y(k) = y(k — 1) = tanh(way(k — 1) + wer(k)) (1)
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Figure 2: Structure of single node equalizer.

The step responses include a single stable equilibrium state
when |wa| < 1 and a combination of 1 or 2 stable equilib-
rium states plus an unstable equilibrium state when |wa| >
1. Limit cycles/saturation occur if

d
o tanh(s) >

(2)
a
at the activation, s, of the equilibrium states. As |w,| in-
creases the node takes longer to converge to the equilibrium
state/ limit cycle.

3. SINGLE NODE RNN EQUALIZER DESIGN

The RNN output is designed to be =+y.q, corresponding to
the transmission of symbols 1. The RNN equalizer must
be stable under a constant input {(equivalent to the repeated
transmission of either of the 2 symbols through a stationary
channel with no additive noise), thus +y., are the designed
equilibrium states.

For a channel of the form H(z) = ko + k12! and zero
equalizer decision delay, the constant input corresponding
to the +1 symbol is (ro(k) = ko + k1). 1deally the equalizer
should also change from the —y.q state to the +y., state
in one iteration after receiving the sample (ri(k) = ho —
h1). Application of Eqn. 1 for these input conditions gives
equations for the node weights:

_ tanh ™! (yeq).h1

a = 3
w _— (3)
-1
wy = tanh™ (yeq) (1)
ho

The same equations are obtaired by using the remaining 2
samples, (r2(k) = —ho + h1) and (ra(k) = —ho — k1), as
input conditions for the transition to the —y., state. Sim-
ulations show that the RTRL algorithm adapts the RNN
weights to these values.

For certain nonminimum phase channels the required
setting of the weight, w, leads to limit cycles/saturation.
Applying Eq. 3 to Eq. 2 with (s = & tanh™(y.q)) gives the
value of the channel zero in which limit cycles occur:

ha

hy exp(4s) — 1
ho

4sexp(2s)

(5)

For longer channel impulse responses the RNN node
must change from the —y.q state to the +y., state for a
larger set of received samples, r;(k). For the transition to
occur in a single step, no solutions exist for the weights,
wa and w; that are independent of the received samples.
The single step transition must either be relaxed or the

transition to a set of points in the vicinity of the desired
equilibrium state must be permitted.

Additive channel noise causes the node output to vary
from the desired equilibrium states. If the noise is such that
the output changes sign then a classification error will occur
(the decision device being a zero-threshold slicer for binary
PAM symbols). An approximation of the probability of er-
ror may be obtained by calculating the magnitudes of the
noise samples, n;, that cause a classification error for each
of the received samples, ri(k}, i = 0,...,3. Substituting
(r:(k) + n;) for r(k) in Eqn. 1 and using the condition that
y(k) is of the opposite sign to the desired output, classifi-
cation errors occur when (n; > ho). Thus, for a zero mean
Gaussian noise pdf, the probability of error is given by

1 ho
Pc = §erfc(-\7_?;) (6)

This approximation assumes that the output is initially at
one of the desighed equilibrium states and, in general, will
not be valid due to the prescence of noise on previously
received samples. Noise on one sample adversely affects the
equalizer performance on subsequent samples and Eqn. 6
becomes a lower bound on the probability of error.

The problems of the noise feedback mechanism and the
limitations on nonminimum phase channels and channels
with longer impulse responses are removed if the tanh(-)
nonlinearity is replaced by a slicer. There is more freedom
in weight specification as there is no unique value of acti-
vation that gives the desired output states. Only channel
noise that results in classification errors will result in noise
being fed back to affect subsequent outputs. The resulting
structure is precisely that of a DFE with a single feedback
tap. From Eqns. 3 and 4, the feedback weight is seen to
cancel the intersymbol interference created by the channel
as per the DFE [5].
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Figure 3: BER performance of RNN & DFE

Simulations comparing the bit error rate (BER) for the
channel H(z) = 0.8192 + 0.57342~" show the performance
improvement over the single node RNN obtained using a
DFE with 1 input tap, 1 feedback tap and zero decision
delay (Fig. 3). The figure also shows the RNN lower prob-
ability of error bound (Eqn. 6).
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4. DESIGN OF MULTINODE RNNS

Similarities between the DFE and RNN were observed in
a number of simulations of multinode RNNs operating on
longer channels. In some cases the network trained to a
structure such that nodes, with the exception of the output
node, were being used merely as symbol-period delays. Fur-
thermore the weights on the connections from these nodes
to the output node were such that they cancelled the inter-
fering symbol terms of the filter obtained by the convolution
of the channel filter and the FIR filter formed by the output
node from the received sample delay line. Again the RNN
is operating in the same manner as the DFE by cancelling
the post-cursors of the effective channel impulse response
[5]-

The multinode RNN may be reconfigured to use the
slicer nonlinearity and with node ¢ estimating the symbol,
z(k — d — 1), where d is the decision delay of the equalizer
and (i = 0,1,---). This structure (Fig. 4) is similar to a
bank of DFEs operating in parallel, each with a differing
decision delay and using the outputs to provide old symbol
estimates rather than a feedback delay line. This allows
symbol estimates to be updated as and when more of the
transmitted symbol energy arrives at the receiver (i. e. soft
decision feedback) and to potentially reduce the problem of
error propagation. This method is only suitable for equaliz-
ers operating with a decision delay less than the time span
of the channel impulse response.

) A
Egﬂ e

= 1
_{Nodcl?‘ob)
2 &

Figure 4: Structure of the modified RNN equalizer.

Connections to a node from the received sample de-
lay line only exist for samples containing energy from the
transmitted symbol that the node is estimating. Feedback
connections are restricted such that only interfering terms
due to symbols transmitted prior to the symbol being esti-
mated by the node are cancelled (the channel post-cursors).
The number of nodes in the network is (n. — 1) for a chan-
nel with an impulse response of n. samples. This provides
only node 0 with complete cancellation of the channel post-
cursors and so an additional delay line fed by symbol es-
timates {from node (n. — 2) is used to provide symbol es-
timates not generated explicitly by nodes. This results in
node (n.—2) having exactly the same structure as the DFE.

Adaption of the new network is achieved using the LMS
algorithm in conjunction with a training sigral. The al-
gorithm requires that nodes have correct symbol feedback
during training. This makes the nodes independent of each

other and allows a seperate error signal and adaption adap-
tion algorithm to be formed for each node. Asin the RTRL
algorithm, the error metric is the instantaneous square error
between the transmitted and estimated symbol. The node
activation is taken as the symbol estimate rather than the
node output due to the undifferentiable node nonlinearity.

An alternative RNN (structure 2) may be formed us-
ing additional connections from nodes with smaller decision
delay to cancel channel pre-cursors and creates a structure
that is more fully recurrent. This structure has an improved
performance given correct symbol feedback as a greater pro-
portion of the intersymbol interference is cancelled. The
adaption algorithm is modified to account for the additional
feedback taps.

5. PERFORMANCE COMPARISON

The performance of the 2 alternative RNN structures were
compared against the DFE by simulating the bit error rates
as function of signal-to-noise ratio whilst operating on the
stationary nonminimum phase channel, H{z) = —0.2052 —
0.5131z7! +0.7183272 4 0.36952 7 + 0.20522* corrupted
by additive white Gaussian noise.

All simulations used a 2 level PAM scheme for the trans-
mitted symbols and the equalizers were trained for 2000
symbols using LMS type adaption algorithms prior to BER
measurement. A step size of g = 0.05 was used in all
adaption algorithms. After each adaption process was com-
pleted, 10* symbols were transmitted and the number of
errors accumulated. This process was repeated until 10° or
10° nontraining symbols had been transmitted and an en-
semble averaged BER calculated. This policy was adopted
so that the variations in the weight settings inherent in the
LMS adaption algorithm are averaged.

Both RNN structures had 4 nodes and inputs of up to
4 received channel samples with a decision delay, d = 0. A
feedback delay line of length 3 fed by node 3 was used to
generate the symbol estimates {T(k—35),...,Z(k—7)}. The
4 comparable DFE structures had m = (d+1) received sam-
ple inputs where the decision delay, d = 0,...,3 and each
used n = 4 past decisions to cancel intersymbol interfer-
ence. The different DFE structures were used to compare
the performance of the output of each of the 4 nodes in the
RNN structures.

Figure 5 shows the performance of a DFE operating
with d = 0 against the 2 RNN structures using node 0 as
the equalizer output. The differences between the 2 RNN
structures is negligible. The lower curve shows the perfor-
mance of all 3 equalizer structures operating with correct
symbol feedback. This curve is the same for both RNN
and DFE equalizers as the input configuration of node 0
of the RNNs and of the DFE is identical. The improved
performance of the modified RNN equalizers over the DFE
is clear.

Figure 6 compares the pertormance of a DFE withd = 1
against the RNN structures using node 1 as their output.
RNN structure 1 operates just below the optimum at high
levels of SNR. The correct symbol feedback curve for all
3 equalizers is again the same due to the identical input
configuration under these conditions.

Figure 7 indicates that for d = 2 the DFE and RNN
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structure 1 have similar performance. RNN structure 2
has a slightly larger BER at higher levels of SNR. This plot
shows 2 correct symbol feedback curves — the first for RNN
structure 1 and the DFE and the second for RNN structure
2. Node 2 of RNN structure 2 uses the output of node 0 as
a symbol feedback input and so cancels a greater portion of
the intersymbol interference occuring in its received sam-
ple inputs. Under correct symbol feedback conditions this
makes RNN structure 2 more able to classify the recieved
samples correctly. It is noted that the performance gap be-
tween ideal and actual is much greater for RNN structure
2 than RNN structure 1 and the DFE.

Finally, Figure 8 shows the performance of the struc-
tures with d = 3. The RNN structure 1 and the DFE have
the same structure and so their performance is identical.
RNN structure 2 has a consistently poorer BER compared
to RNN structure 1 and the DFE. Once more the deviation
between ideal and actual is greater for RNN structure 2.

6. CONCLUSIONS

The RNN equalizer has been observed to reduce intersym-
bol interference by a method similar to the DFE. For 2
path channels the network reduces to a single node and the
use of hyperbolic tangent nonlinearity is seen to increase
the network’s susceptibility to noise. Theoretical settings
of the network weights are formulated and are observed in
networks adapted by the RTRL algorithm.

Two alternative RNN structures have been developed,
both using slicer nonlinearities and with each node output
explicitly defined. For a comparable decision delay, a per-
formance improvement of RNN structure 1 over the DFE is
indicated. RNN structure 2 has a generally inferior perfor-
mance due to incorrect symbol classification by low decision
delay nodes increasing rather than decreasing intersymbol
interference present on other nodes. It is concluded that
RNN structure 1 outperforms the DFE only when minimal
decision delay can be tolerated.
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Figure 5: BER performance of RNN structures 1 & 2 and
DFE with do =0.

T T T

DFE m=2,0=4 4=t ~4—
RNN structure 1 - node | output -
RNN structure 2 - node | output <8+~

05 Correct symbal feoddack ~x— ]

log10(Symbol Brror Rate)
@«

ask 4

i s 10 15 2
SNRAB
Figure 6: BER performance of RNN structures 1 & 2 and
DFE with :% =1.
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Figure 7: BER performance of RNN structures 1 & 2 and
DFE with d°= 2.
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Figure 8: BER performance of RNN structures 1 & 2 and
DFE with 4 = 3.
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