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ABSTRACT

The progress of digital electroencephalography gave rise
to the problem of EEG data recording. In this paper
a DPCM scheme for EEG signal compression is dis-
cussed. In particular the performance of a class of pre-
dictors based on recurrent neural networks is presented.
The training strategy is accurately described and the
results of a comparison with some other classical linear
and static neural predictors are given. The proposed
recurrent neural predictor demonstrates to be compet-
itive with the others in offering good performance at a
very low computational cost.

1. INTRODUCTION

Digital electroencephalography (EEG) produces a large
amount of data that has to be recorded for future clin-
ical uses. EEG signals have to be picked up in many
pairs of points of the scalp and for a long time (at least
20 minutes). The huge quantity of resulting digital
data could be reduced by means of signal compression
techniques.

In [1] e vector quantization approach is proposed,
it offers high compression rates and is suitable for the
classification of typical graphoelements but does not
behave well when high frequency components are pre-
dominant in the signal. In [2] a zero order predictor
is used, the prediction error is adaptively quantized.
The quantizer is designed to minimize the distortion
by assuming a given probability distribution for the er-
ror signal, which is periodically scaled to fit into the
quantizer range. Medics usually require data compres-
sion be lossless: a DPCM approach, which permits the
control of the peak reconstruction error, seems then to
be suitable for the EEG compression (by imposing a
null peak error the method is lossless). In [3] the re-
sults of the comparison among different predictors for
a DPCM scheme are presented. Linear adaptive and
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non-adaptive predictors as well as feed—forward neural
networks are tested.

In a DPCM scheme (see Figure 1) the present signal
sample is predicted based on the past ones; the predic-
tion error is coded by entropic techniques (Huffmann
and Arithmetic coding) [4]. The results of comparing
the performance of predictors based on dynamic neu-
ral networks [5, 6] with that obtained with predictors
based on classical linear adaptive schemes (ADPCM)
and on static feedforward neural networks [3] are ex-
posed. The compression ratio which can be achieved by
coding the resulting prediction error is also reported.
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Figure 1: Outline of the DPCM lossless compression-
decompression scheme.

2. RECURRENT NEURAL NETWORKS

A dynamic neural network is constituted by a unique
layer of nodes: all the nodes have a feedback with uni-
tary delay connected to all the inputs. The set of the
output values at a given instant is called state of the
network and it enhances the set of inputs used to com-
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pute the outputs at the successive mstant. A subset
of the nodes is the actual output of the network, the
rest of the nodes only contributes to the state. It is
possible to demonstrate that feedforward neural net-
works are a particular case of these dynamic networks.
The presence of the feedback makes dynamic networks
quite suitable for time series processing [7]. For train-
ing the dynamic neural predictors the Real Time Re-
current Learning—RTRL—rule proposed by Williams
and Zipser [5, 6, 8] is used. It belongs to the class of
the supervised learning algorithms. The training ex-
amples are constituted by segments of the input signal
of length T and by the corresponding desired outputs.
This sequence of input-output pairs is called RUN. In
our case the RUN is made up of a segment of EEG sig-
nal. The RTRL algorithm search for the set of neural
weights minimizing the Mean Square Error—MSE—
over every run. The number of products required by
the algorithm increases as the fourth power of the num-
ber of nodes: the training time sensitively grows with
network dimensions [5].
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Figure 2: Predictor based on a 2 nodes dynamic neural
network.

In Figure 2 a predictor based on a dynamic neural
network is depicted, its input—output rule, producing
the prediction value, is:

.’i‘t = f[ai‘,_l + b(l?t_l + Cyz(t ~— 1)] (1)

and by simply rearranging the arguments of the func

tion f[ ]

&y = flowi-1+ Becr +cflyTi—2+ ber—a + qua(t — 2)]].

(2)
In this last formulation it is evident the direct depen-
dency of the predicted present sample on the previ-
ous true sample and on the previous prediction error

value; there 1s also the dependency on the same quanti-
ties with higher delays in a secondary activation func-
tion. The y» node causes the memory of the predictor
to be theoretically infinite. The use of the previous
prediction error values in the prediction formula corre-
sponds to model the signal as a Nonlinear Auto Regres-
sive Moving Average—NARMA—process: a non linear
model is very suitable given the nature of the EEG sig-
nal.

3. THE TRAINING STRATEGY

The training strategy must be accurately designed: if
a RUN for each EEG graphoelement (alpha rythms,
epileptic activity, artifacts, etc.) is built the network is
constrained to learn many drastically different models
of signal, presented one after the other, and it is un-
able to memorize a model suitable for all the graphoele-
ments. For this reason a unique RUN including all the
characteristic graphoelements is created.

Various experimental tests have been performed for
finding the best cocktail of graphoelements to be cho-
sen for composing the most representative RUN. They
demonstrated that networks trained with a large num-
ber of graphoelements perform best, being able to gen-
eralize their behaviour by also predicting efficiently EEG
segments never learned. Nevertheless it has to be ob-
served that some particular graphoelements, such as
for example the muscular artifacts, do not help learn-
ing, on the contrary their presence in the RUN seems
to confuse the network, worsing its behaviour on the
other tracts of the signal too. These graphoelements,
that differ from the others both in their statistic and in
their range, must then not be included in the training
set.

An attempt was also made to enhancé the supervi-
sion by forcing the network to reconstruct the previous
sample or to predict the future one. In the former
case the moving average component in the primary ac-
tivation function is increased. In the latter case the
network is prepared, at the present step, to predict the
future sample whose estimation will be already present
in the state vector at the next step: only a refinement
of this estimation should then be required. These two
enhancements did not produce the expected results.

Networks with many nodes or many inputs learn
very fast to predict segments of alpha rythms (which
are very correlated) but reduce their generalization ca-
pabilities over the other typical graphoelements.
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4. EXPERIMENTAL RESULTS

The parameter used to evaluate the performance of the
predictors the variance of the prediction error is evalu-
ated. Networks of different size have been tested; those
with a few nodes and a few inputs result to be much
more effective: in particular the network with 1 node
and 2 inputs and that one with 2 nodes and 1 input
were the best.

By comparing the prediction performance of these
best dynamic networks with the performance of a static
neural predictor and of classical adaptive linear pre-
dictors [3] it resulted that dynamic networks highly
outperform static networks and some adaptive linear
predictors, but are less efficient then the best of the
adaptive linear systems (the one using the gradient al-
gorithm for coefficients updating). In Figure 3 the ratio
between the variance of the original signals and that of
the prediction error obtained with some different pre-
dictors is depicted. The values are reported separately
for the group of signals from which the training set was
extracted (Training) and for the rest of signal tracks
(Testing).
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Figure 3: Ratio between the variance of the original
signal and that of the prediction error for some predic-
tors.

From the point of view of computational complexity
the dynamic networks are much simpler than the static
ones and the network with 1 node and 2 inputs result
less demanding than all the adaptive predictors. Neu-
ral networks require the computation of a non-linear
function which can be achieved by means of look—up
tables. In Figure 4 a comparison of complexity—in
term of sums, products and non-linerities— among the
above mentioned predictors is graphically represented.

The prediction error coding has been done by vari-
able length codes: in particular the Huffman and the

GRAD NN20 N2_i1_L Ni_i2_L

Figure 4: Evaluation of computational complexity of
the predictors.

Arithmetic code have been tested [4]. For both the
algorithms static and adaptive versions have been im-
plemented, for the Arithmetic code source models with
memory have also been used.

In Figure 5 the percentages of the occupancy of the
compressed signals with respect to the original ones are
reported for the case of Huffman coding: ORIG. is the
original signal directly coded with the Huffman code,
GRAD. is the compressed signal obtained with the
adaptive predictor, N2 I1_L and N1_I2_L are the sig-
nals obtained with the dynamic networks with respec-
tively 2 nodes/1 input and 1 node/2 inputs. The adap-
tive technique performs better than the neural predic-
tors being able to track the variations in the statistic
of the signal with higher accuracy.
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Figure 5: Percentage of occupancy of compressed sig:
nals with respect to the original one: adaptive Huff-
man coding.

In Figure 6 the best experimental results are re-
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ported: they are obtained by using an Arithmetic code
which models the signal as a memory 1 process. It
is worth noting that in this case the neural predictors
give better performance than the adaptive one: this is
caused by the fact that a residual correlation remains
in the prediction error signal obtained with the neural
networks, this residual correlation is well modeled by
this Arithmetic coder permitting it to work at its best:
a powerful cooperation between the predictor and the
coder is then obtained in this case.

Figure 6: Percentage of occupancy of compressed sig-
nals with respect to the original one: adaptive order
1 Arithmetic coding.

In conclusion experimental results suggest that sim-
ple dynamic networks (the simplest one has only 1 pro-
cessing node) produce good results in predicting EEG
signals and can lead to the highest compression ratio
ini cooperation with a suitable coding algorithm.
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