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ABSTRACT

A time signal prediction algorithm based on Relative
Neighborhood Graph (RNG) localized FIR filters is de-
fined. The RNG connects two nodes, of input space
dimension D, if their lune does not contain any ot-
her node. The FIR filters associated with the nodes,
are used for local approximation of the training vec-
tors belonging to the lunes formed by the nodes. The
predictor training is carried out by iteration through
3 stages: Initialization of the RNG of the training sig-
nal by vector quantization, LS estimation of the FIR
filters localized in the input space by RNG nodes and
adaptation of the RNG nodes by equalizing the LS ap-
proximation error among the lunes formed by the nodes
of the RNG.

The training properties of the predictor is exemplified
on a burst signal and characterized by the normalized
mean square error (NMSE) and the mean valence of
the RNG nodes through the adaptation.

1. Introduction.

A time signal predictor based on the Relative Neigh-
borhood Graph (RNG), [1] used for localizing finite
impulse response (FIR) filters in the input space of di-
mension D of a training signal, is proposed.

The predictor is trained during 3 stages:

Stage 1: Initialize the RNG which quantize the input
space of the training signal.

Stage 2: For fixed RNG, estimate the localized FIR
filters, associated the nodes of the RNG.

Stage 3: If the prediction error of the training signal
is sufficiently low then terminate training else
adapt the RNG to the training signal and conti-
nue from Stage 2.

It is assumed that a training signal z,, n = 1,... .| N
and a dimension D of the input space is given. This
defines the input signal vector X% = (z4,...,Zn_p41)
and an augmented input vector zI = (x%,1). From
this, the training signal data matrix becomes X =
[xl, .. .,xN].
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2. The Relative Neighborhood Graph.

The RNG of the column vectors of the matrix P =
[p1,...,Pr] where pI = (p14,...,pp;:) associate a
node number ¢ to the column vector number i.

A pair of RNG nodes 7 and j are connected, if the lune
A; j of the corresponding vectors p; and p; does not
contain any other column vector from P.

If the sphere with center in x and radius r is denoted
B(x,r)={y|d(x,y) <r} (1)

where d(x,y) is the distance between x and y,
then the lune A; ; of p; and p; is determined by .

Ai; = B(pi, d(pi, p;)) 0 B(p;,d(pi,pj))  (2)
or by
Aij = {x | max(d(ps, x), d(x,p;)) < d(p:,p;)}- (3)

The RNG incidence matrix C = [C; ], i, = 1,..., R,
where the element C; ; = 1 if the RNG nodes 7 and j
are connected, otherwise C; j = 0. The R column sums
of C represents the valences of the respective nodes of
the RNG. A 3-node RNG with D = 2, P = [py, p2, p3],
valences 1, 2 and 1 and the Euclidean distance measure,
is exemplified in Fig. 1. Here x; belongs to the lune
of node 1 and 2 and x; to the lune of node 2 and 3,
furthermore x; belongs to the intersection of the two
lunes. The x; does not belong to any lune.

3. Training Algorithm.

The predictor training algorithm, [4] requires the fol-
lowing 3 stages:
Stage 1: Initialization of RNG.

[P, C] = RNG(X). (4)

'The method of initializating the RNG of X, such that
all column vectors of X belongs to at least one lune
of the RNG is as follows: Select randomly a few seed
vectors from X and use them as RNG nodes. Then
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associate the vectors of X not member of any lune, to
their nearest node. Now for each node, select among
the associated vectors, that vector with the largest di-
stance from that node and include it as a new RNG
node. Generate the new RNG and repeat this initiali-
zation operation, until all columns of X are members
of at least one RNG lune.

Stage 2: Estimation of Local Filters.

To each node i of the RNG is associated a FIR filter
wl = (w1,i,wa4,..., WD i, Wp41,i), where the element
wp41,; is the bias term of the filter. All filters are then
represented by

W:[Wl,...,WR]. (5)

The basis of W estimation, is the association of each
training vector to the nodes of the RNG. Let the asso-
ciation matrix

A =Jag,...,ap] (6)

where al = (ay,n,...,ar) and a;,, is the fraction of
times the RNG node 7 takes part in forming lunes to
which x,, belongs. From this the Zil ain=1.
Depending on how the input signal to the local filters
are generated, 2 different local filters W and V can be
defined:

In the first filter, x, is projected directly on the local
filters W, which leads to the predictor:

R
Znp1 = Z ai,nw?zn (7)
i=1
From this is obtained
Enp1 = al Wz, = (Wa,) 2, (8)
which leads to
Zn41 = W, 2n (9)

where W,, are the time varying predictor coefficients.

In the second filter, x, — p;, ¢ = 1,..., R are pro-
jected on the local filters V = [vy, ..., vg], where v] =
[vllj, .. ‘)'UD+1,j]~ Using Yn = [yl,n, .

j
..s¥R,n), where
¥¥n =[x — p!, 1] leads to the predictor:

R
i‘n-}-l = Z a"a"v’;'ryi,"' (10)
i=1
Rewriting leads to
Zn41 = trace(VT Y, diag(a,)) (11)

and

#n41 = trace(diag(an,)VTY,) = trace(VIY,) (12)
where V,, are the time varying predictor coefficients.
For a fixed RNG the LS-estimator of W becomes:

Rw=r (13)

where R = [R;;],4,j=1,...,R, wl = [w],..
and r¥ = [r7,. .. ]
The matrices of Eq. 13 are found as follows:

.,wg]

N
Ri,j = Z(ai,n—lzn—l)(aj,n—lzn—l)T (14)

n=1

which is the correlation matrix between the augmented
input signal z,_;, weighted by the fraction of times
RNG node 7 and j takes part in forming lunes to which
Z,_1 belongs.

N

r; = Zai,n—lxnzn—l (15)

n=1

which is the correlation vector between z, being pre-
dicted, and the input signal z,,_; weighted by the fraction
of times, the RNG node 7 takes part i forming the lunes
to which z,_; belongs.

Using Eq. 13 in the case of a fixed RNG, the LS-
estimator of V becomes:
N
R;; = Z(ai,n—wi,n—1)(aj,n-1)'j,n-1)T (16)
n=1

which is the weighted correlation matrix between the
augmented input signals y; ,_1; of RNG filter number
t and y; -1 of node j.

The right hand side becomes

N
r = Zai,n_ﬂn)’i,n—l (17)
n=1

which is the weighted correlation vector between z,
being predicted, and the input signal y; ,_; of filter
number .

Stage 3: Adaptation of the RNG to the training
signal.

The training signal squared error matrix E = [E; j],
1,7 = 1,..., R of the RNG is then determined as fol-
lows: Let e, = z, — &,, n = 1,..., N be the training
signal estimation error at time n. Then the squared
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error €2 is divided equally among the lunes from which
#, is generated, [5]. If the RNG node ¢ and node j
forms a lune (C; j = 1), then E; ; is the sum of squared
errors of the training signal associated that lune.

The adaptation rule of the nodes

P = [p1,.--,Pis---,Pr] then becomes:

If the valence of node i is > 1 then adapt p; in a di-
rection such that the lune with the minimum squared
error, which p; takes part in forming, is enlarged in
size, and the lunes with larger squared errors are de-
creased in size. This leads to the following adaptation
of P:
A Prew =Poa + AP (18)

where

AP = [Apy,...,Api, ..., APR] (19)

If the above minimum squared error is denoted minFE;
then the adaptation of node i becomes:

R

Ei j — minE;
Ap; =) T— Cii(pj — Pi)p (20)
i=1 b

where p is the adaptation constant.

4. Investigation of the training
algorithm properties.

The RNG training is carried out using the predictor (7)
in the case of a burst signal generated from the Subba
Rao model, [2], [4]. The signal is shown in Fig. 2. In
Fig. 3 and Fig. 5 are shown the NMSE depending
of the number of iterations through the training signal.
In Fig. 4 and Fig. 6 the corresponding mean valence
of the RNG nodes are shown.

The initializing parameters of the training are shown
in the following table:

D | p | Rinit. || Radaptea | NMSE and valence
3 1001 3 36 Tig. 3 and Fig. 4
3 |0.01 3 34 Fig. 5 and Fig. 6

From the training experiments it is seen that the two
cases obtain approximately the same NMSE values;
but the mean RNG valence for D = 2 becomes larger
than the mean RN G valence for D = 3, to compensate
the reduced local approximation capability in the case
of D =2.
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Figure 1: Example 3-node RNG.
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Figure 2: Subba Rao training signal.
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Figure 3: NMSE for training on Subba Rao with D=2.
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Figure 4: Mean RNG valence for D=2.

Figure 5: NMSE for training on Subba Rao with D=3.
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mean RNG valence

Training signal: Subba Rac. D=3
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Figure 6: Mean RNG valence for D=3.
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