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Abstract - This paper presents a linear feedback neural
network and an adaptive algorithm to achieve the blind
signal separation under near-field situation. The conver-
gence property of algorithm and stability of equilibrium
state are discussed. Some simulations are provided.

I. INTRODUCTION

Separating original signals of interest from observa-
tions is a fundamental problem in signal processing. In
the most cases, sources as well as mixture (channel) are
unknown. The blind signal separation is one that
separates unknown sources from the observations
without knowing the transmission channel. We can find
its wide range of applications in array signal processing,
sonar system, biomedical signal detecting, and so on.
Generally there are two major approaches to this
problem. One is achieved by orthogonalizing channel
parameter matrix, and the orthogonalized parameter
matrix can be obtained from eigen-decomposition (see
[1][2]), this approach's weakness lies in the complexity
of algorithm and difficulty to be applied in real-time
processing. The other uses stochastic approximation
method (see [3][4]), this approach can be used in real-
time processing. In all of the above methods, only ideal
transmission channel is considered, and its phase (delay)
differences are skipped, or only narrow-band sinusocidal
sources are considered (see [2][6]). In near-field
situation, these approximations are inadequate.

In near-field situation, MA mixture model can be
adopted. Under independence assumption of sources,
applying Hebbian learning rules to build adaptive
equations for system parameters, network and algorithm
to realize blind signal separation in near-field situation
are presented. The stability and convergence property of
the approach are analyzed. And some computer simula-
tions are provided to demonstrate the effectiveness.

II. PROBLEM STATEMENT AND SEPARATION
NETWORK
Problem statement.
Consider the following separation problem

x(2) = G(2)5(2) (1)
where s(z) is the source vector, x(z) the observation
vector, and G(z) the mixture matrix. Denote the transfer
function from source s[l(z) to ith receiver is gij(z), using
MA model, gij(z) can be expressed as
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mij

gij(z)z zg(,'(m)zﬁn (2)
m=0 :
where gij(m)=0 when m>mj;, and
g1 (2) giv (2)
G(z) = (3)
gni(2) g (2)

The objective of blind signal separation is to
determine s(z) from x(z) without knowing G(z). Note
that for simplicity, we assume G(z) is a square matrix,
and the transmission noise isn't considered in equation
(1) (see simulations in section V).

Separation network.

Fig.1 shows a linear feedback neural network
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Fig. 1. Network's block diagram

Feed the received time series x(k) to the network, we

have

N
e (2)=x,(z)= 2 b (2)y,;(2) (4)
j=1
J#i
where 1 £i< N, and
i) =k (2)e;(2) (3)
where 1 <i < N. Combine (4) and (5), we get
N
hi(z)yi(2)+ Zhij (Z)yj (2)
o
N
=xi(z)=2g!-/ (3)5_,‘(3) (6)
=1
Rewrite (6) in matrix t{orm
H(2)y(z)=x(z) =G (z)s(z) (7
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From (7), once H(z)U=G(z), we can get y(z)=Us(z),
where matrix U is a generalized permutation matrix (see
[1D. So the architecture of the network allows to
separate unknown sources. In blind signal separation,
however, both G(z) and s(z) are unknown, y(z) cannot
be computed directly. In the next section, we propose an
adaptive algorithm to make H(z) approximate G(z).

III. ADAPTIVE SEPARATION ALGORITHM

Although sources s(k) are independent, the received
signals x(k), through transmission channel (mixture),
are cross-correlated. The goal of separation network
H(z) is to make its outputs y(k) independent again, thus
the purpose of signal separation is achieved. Using
Hebbian learning rule, the adaptation of coefficients
hj (m) (where 1<i,jsN and 0<mzM J) will reduce the
correlatlon of network outputs. We propose following
adaptation rules

(hy(m,k+1) = by (m, k) +ey, (k)y,; (k - m)
where 1<i,j<Nand 1 <m< M
3
B (0,k+1) = hy (0,k) +ey; (k)y; (k)

where 1<i,j<Nandi#j

(8)
h;i(0)=1

where 1<i,j<N
where ¢ is a positive adaptation gain.
From (8), we can deduce

Ahy (m) =hy; (m,k+1)—hy; (m,k)=gy; (k)y;(k-m)
where 1<i,j<Nand lsm<M;

Ahy(0) = Ay (0, k +1) - Ay, (0,k)=eyi3(k)yj (k)
where 1<i,j<Nandi=j

The equilibrium states ¢* of the network are solutions
of the following equations

<y (h)yj(k=m)>=<y;(c",s(k))y;(c",m,s(k))>=0
where 1<i,j<Nand ISm<M;
<y (k)yj (k) =<y} (c",s(k))y;(c ,s(k))>=0
where 1<i,j<Nandi# ]
“:[hll(o),-:hll(Mll);hl2(0)’-’hl2(Mlz);‘;hNN(O)s"hNN(MNN)]T
If signal sources and channel mixture satisfy the

following two assumptions:
Assumption I. ( zero-mean and independence )

(10)

. i i {d, (c,n)d ;o (c,n) +3i
a=ln=0
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L.<s;(k)>=0 where 11 <N

2.<s;(k)s; (k—m)>=<s;(k)><s;(k-m)>=0
where 1 <ij <N, i=jand m=0,1,...

82 0<m<rt, 1<i<N

3.<s;(k)s; (k—m)>= {0’

Assumption 2. ( realizability )

All the zero points of g“(z) 1<i<N, are located
within identity circle, Hl (z) is stable and realizable.
Theorem 1. The state ¢ which achieves signal separation
is an equilibrium state of equation (10).

Proof: denote y(c,z)=D(c,z)s(z), we have

N «
yi(c,k)=>.> diy (c,n)sy (k—n)

a=1n=0

N - (11)
yile,k—my=3 % dy(c,)ss(k—1-m)
B=11=0
where 1 <i, j < N. From assumption 1, we get
N o
<yi(c.k)y;(c.k=m)y>=73" 3 di (c.n)d ;o (c,n—m)32
a=ln=m
where1_<_i,j£N,ISmsMijandi;tj (12)

N w ‘
<y )y (e k-my>=3 3 ¥ dig(c,m)dj, (e,n-m+1)8;

a=ln=m-1 t=0
n=0

where 1 <i<Nand I <m < Mj;

(13)

<y,-3(c,k)yj(c,k)>=

d (c,n)d (c,r)}d5 +
r=0
rn

3% i i {d2 (e, nydig (¢,n)d g (c,n)+ Z a(cin)dig (c,r)djl,(c,r)}5i5§

azlp=1n=0
r=n

where 1 <i,j SN, i#]j (14)

Because state ¢ can fulfill signal separation, so D(c,

z) is a generalized permutation matrix. From this fact
we can deduce all coefficients of 6(12, 8 4and 8 285

in equations (12-14) are equal to zero. Hence the state ¢
which achieves signal separation is an equilibrium state
of equation (10).

Theorem 2. Assume MJ M I<i, _]<N when M*
large enough, the equilibrium states ¢ *of equation (10)
always achieves signal separation.



Proof: From assumption 2, H'l(z) is stable, so d; on(C* n)

(where n>M )equals to zero when M" is large enough.
We have

N M*

yi(e k)= Y Y di (¢ m)se (k=-n)  (15)
a=1a=0
where | <i<N, ¢* is the equilibrium state of (10), so

{<y,.(c‘,k)yj(c‘,k-m)>=o 1<i,j<Nand 1smsM‘(l6)

<y e k)y; (" k)>=0
From (12) and (16), we can get lemma 1.
Lemma 1. If there exists a component dla(c Mgy )20 in

vector da(c ;g Y(where 1<i<N and O_naSM ), then the
other vector da(c* ,n)=0(where 0<n<M" and n#ng).

From lemma 1, we know No<N( N is the number of
non-zero vector d (c ;). If Ng<N, in practice, some

1<i,j<Nandi#j

sources will not appear in network output. This is a little
possibility state, generally we always have Np=N.

From (13-14) and (16), lemma 2 can be deduced.
Lemma 2. In every vector da(c*,na), there exists only
one non-zero component di(a)a(c*,na). Moreover, i(a
P#i(an) when aj#ay.

Combine lemma 1 and lemma 2, we know D(c z) is
a generalized permutation matrix, hence the theorem
has been proved.

IV. ANALYSIS FOR STABILITY AND CONVERGENCE
Stability of equilibrium state.
* . . .
Denote &c=c-c ", adopt linear approximation, we have

d < 3hy (m)> N My
dt |q§ll§|
1 d <8k (0)> N a<y (k)y, (k)>
Ta<om)> _ ZZ[___J_

8h
€ dt polgetral oh,, (r) ]m- <Bhpy (r)>
We can get (the deduction procedure is omitted )

Mz

1 [a<y,-<k)y,<k-m)>
€

Sh
Ohpy (r) )c_‘,< o ()2

=
u

(17

™M=

b, (ii,0) 0 0
1 d <8h;(m)> b, (i, 1) b; (i, 0)
E dt =7 0
b (i, M°=1) b (ii,M"=2) ... b (ii,0)
where 1 <1 <N, and

<8hy (m)> (18)

= A,y (2)
> bi(pg,mz" = A”"( : (19)
n=0

where A* (z) is the determinant of H(c \Z), and A* pq(z)
is the complementary minor of H q(c AR

From (12), if €0 and t;i(ii,O)>O (b;(ii,0) is decided by
G(z)), equilibrium state ¢ must be stable.
Convergence of algorithm.
Theorem 3. Under assumption | and 2, the convergence
of adaptation algorithm (8) can be guaranteed by
properly choosing gain €.
Proof: System's energy function is defined as

] N N
E(k)=<y" (k)y(k)>=Y <y} (k)>=> E; (k) (20)
i=1 i=]
From network's architecture, we have

Y& i (k)
AE; (k)= 2ZZ<y,(k) Ah, (ry>  (21)
p=lr=0 p(r)

where 1 <i<N, and

ay; (k)
Oh,, (r)

(k N
»( )=—yp(k_r)_zhy'(0) (22)
=1

ahip (")
J#i
where | <i<Nand 1 <r<M"
If network’s feedback effect is omitted, the 2th part in

(22)'s right side equals to zero, using adaptation
algorithm described in (8), we have

J=!
J#i

N M* N
AE, (k)= -2e{3. Y <y} (k)y2(k-m)>+3 <y} (k)y}(k)>} <0 (23)
J=tr=0

where 1 Si<N
So the adaptation algorithm is asymptotic convergent.
If the feedback effect cannot be omitted, the
adaptation algorithm must be changed to

A; (H(0))
AH(O)
where | <i<Nand 1 <m<M"

hy (m ke +1) = hy (m, k) +e Y (k)y,; (k=m) (24)

1 hy(0) ... Ay, (0)
H(0)= h21(0) 1 th(O) (25)
hnl (0) hnZ (O) 1

where AH(0) is the determinant of H(0), A;;(H(0)) is
the complementary minor of H;;(0). We also have AE;<
0. So the modified algorithm is still asymptotic
convergent.

V. SIMULATIONS
Simulation I. Separation of two sources
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g(2)=1+0.35z" +0.0127 +0.00127  g,,(z)=08+0.52"-0.1z% +0.01z”
g3(2)= 0.49+0.24z"' +0.09822 +0.008z" 8 (z)= l+0252 +0.1z% +0.0127

Gains are chosen as: 811—10' 1—104 i#].
Simulation results are:

R AEAAAARY

ST
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Add stochastic noise nj(k) to x;(k) in simulation I,
i=1,2. Simulation results are:

s1{k) 52(k)

x1(k) x2(k)

AR AR AARA A LA B A

MAdnad
AU LCLEG AR RUAR

y1k) ye(k)

(k) n2(K)

Simulation 3. Separation of three sources

g (2)=1+022"+0.0327 +0.001z7 g,;(2)=-0.178-0.083z"' +0.2262% +0.2822

g11(2)=0.35-0.4147" -0,27522 -0.092"3g, () = 0.005-0.0542" -0.47622 -0.061 "

gn(z)=1+o,1z"+o.02z‘l.o,oosz" 83 (2)=0.137-0.11z" +0.0572% +0.3472

€, (2)=0.167+0.2822" -0.4612% +0.23727

032 (2)=-0.268-0.3432" -0.33122 +0.4342 g5, (2) = 1+0.25z" +0.1327 +ooozz
Gains are chosen as: gj;=1.2x10~ -6, €j;=0. 5x1074, i#.

Simulation results are:

1 [ 1 AN AN AYA
L V VYV
) NA S2(K) 330
K 2] 3K
1
L Ll
y1(k) y2(k) y3(k)

V1. CONCLUSION

Due to the asymptotic convergence of the adaptation
algorithm based on Hebbian learning rules, as well as
the network's outputs at equilibrium state are orthogo-
nal, general sources' blind separation can be achieved by
properly choosing network initial state. Computer simu-
lations show that even in the case that there are some
additive noises in received signals, the separation can
still be achieved. Only there will emerge some propor-
tional noises in network outputs. Generally, signal's
equalization process is slower than signal's separation
process, so gain &;; must be chosen smaller than gj;.
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