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ABSTRACT

The statistical learning behavior of the
single-layer backpropagation algorithm was
recently analyzed using a system identification
formulation for noise-free training data [1,2].
Transient and steady-state results were obtained
for the mean weight behavior, mean-square error
(MSE), and probability of correct classification.
This paper extends these results to the case of
noisy training data. Three new analytical results
are obtained: 1) the mean weights converge to
finite values even when the bias terms are zero,
2) the MSE is bounded away from zero, and 3)
the probability of correct classification does not
converge to unity. However, over a wide range
of signal-to-noise ratios (SNRs), the noisy
training data does not have a significant effect on
the perceptron stationary points relative to the
weight fluctuations. Hence, one concludes that
noisy training data has a relatively small effect on
the ability of the perceptron to learn the model
weight vector F.

. INTRODUCTION

The backpropagation (BP) algorithm is a
widely-used training procedure that adjusts the
connection weights of a multilayer perceptron
[3]. It is a gradient-descent method that
minimizes the mean-square error (MSE) between
the perceptron output signals and a set of training
or desired response signals. The BP algorithm is
a nonlinear procedure because of the nonlinear
threshold element contained in each node, and its
behavior is very complex because of the layered
structure. These nonlinearities make it difficult
to analyze the behavior of the connection weights
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and the MSE, even for a small number of nodes.
However, using a system identification model of
the desired response signal, the single-layer BP
algorithm has been analyzed regarding its mean
weight behavior, MSE, and classification
performance for noise-free training data [1,2].
Since the training data and the perceptron input
generally are not related deterministically, this
may not be a realistic model in practice. This
paper models this difference as an independent
additive noise at the perceptron input, and
extends the results of [1,2] to the case of noisy
training data.

CONVERGENCE RESULTS

The system identification model of the
desired response signal is shown in Fig. 1. The
training sequence is generated by passing a
Gaussian data vector X(n) through a linear
system defined by the N-dimensional vector of
weights F. The linear output of the system, d(n)
= FTX(n), is then converted to a binary (+1)
signal via the signum function. The adaptive
component in Fig. 1, corresponding to a single-
layer perceptron, consists of a set of adaptive
weights W(n) whose input is an additive noise-
corrupted version of the data vector X(n), i.e.,
Y(n) = X(n) + V(n). The noise vector V(n) is
white and Gaussian with zero mean and
covariance o2 I; it is also independent of X(n).
The linear output WT(n)Y(n) is processed by a
smooth nonlinearity to generate a signal bounded
in magnitude by 1. The perceptron output is then
compared to the binary training signal, and the
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weights are updated by the single-layer BP

algorithm:

W(n+1)=W(n) +pe(n) FIWI()Y@)]Y(n)
2.1)

em=sgn [FTXm]-WIm Y@ (2.2)

where e(n) is the output error, f(-) 1is the smooth
nonlinearity, f'(-) denotes its first derivative, u
is a positive step size that controls the
convergence properties of the algorithm, and sgn
(-) is the signum function (with sgn(0) = 1). The
second term in the right-hand side of (2.1)
represents an instantaneous estimate of the
gradient of the MSE. The soft nonlinearity is the
following error function:

2 _1_}622/202(1Z
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where o’ > 0 controls the steepness of f(-). The
input vector XTm) = [x;(m), x5(n), ..., Xpn(D)]
consists of independent identically distributed
Gaussian variates with zero means and common
variance o2 and covariance  matrix
E[x(m) XTw] = o L

The subsequent analysis closely follows
the procedure used in [1,2]. Hence, only the
results are presented here. The details are a
straightforward application of the theory
presented in [1,2].
A recursion for the mean weights can be obtained
by averaging (2.1) in two steps, first by
conditioning on W(n), and then by averaging
over the randomness in W(n) using a small p

f(x)= (2.3)

approximation, resulting in
Whn+)=Wmn)+ uz‘/— X
J
{ F! W(n) V_V(n)}
F- 2
aa“ + P(n)
i
JFTF[aa2 +P(m){1 - pf2)|°
_ aW(n) 2.4
[aaz + P(n)[oza2 + 2P(n)F |

3384

where P(n) = W ()W), E[W@®)]= W),

and o = oi _o _ J(;FTW(n)
or+02’ " oy JETF P(n)
k(n)F

JFTE
scalar nonlinear difference equation for k(n):

2ua~/&
n[aaz + k2(n)]

Inserting W(n) = into (2.4) yields a

X

kin+1)=k(n)+

[ oa k(n) 1|

Jaa c(l-a)k2(n) yoa? +2K2@) |
2.5)
with steady-state solution (kg =lm .. k(n))

a
ke = —— 2.6)

The conditional MSE is
_1[ (0,2( + O%)WTW
(0,2( + og)WTW + 02

1-a

E{ez(n)IW] =1+ —2-sin
)
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which, after replacing W by W(n) = R
pacne T JFTR
yields
2 — 2 . _1[ k2(n) .]
E[e (n)lW(n)] =1+ ;sm [m
— —sin '1![—————‘/-&1((11) ]|
T [‘/kz(n) + 0’ |
(2.8)
When k(n) converges to kg,
limn—m,oE[ez(n)IW(n)] =1- %sin_la,
2.9)

which can be verified as the minumum of the
MSE surface. Note that as « approaches 1
(noise-free training), (2.5)-(2.9) reduce to the
results in [1,2] as expected (e, (2.6)
approaches infinity and (2.9) approaches zero).



The probability of correct pattern
classification P, can be evaluated in terms of k(n)
and the trace of the covariance matrix of the
weight fluctuations, yielding

]
J|

11+ Ztan"!
e Y- k() + K ()]
| (2.10)

where tr [-] denotes the trace of a matrix. The
scalar term tr[K,.(n)] satisfies a deterministic
recursion given in [4]. Again note that (2.10)
reduces to [2-(3.15)] for a = 1. For small p,
tr[K.(n)] is proportional to u in steady-state.

Thus,
Jo

Afon 1]
Bl
2.11)

Even if the number of training samples increases
without bound, P¢ can never exceed (2.11).
Thus, although the perceptron precisely learns
the correct hyperplane F, it will not make error-
free decisions because the perceptron input is a
noise-corrupted version of X(n).

I[II. COMPUTER SIMULATIONS

Monte Carlo (MC) simulations of (2.1) and
(2.2) have yielded results in excellent agreement
with the theory [4]. The inputs X(n) and V(n)
were independent vectors, jointly Gaussian with
zero means and covariance matrices 62x 1 and
o2y 1, respectively. The perceptron had two
adaptive weights (N = 2) and the underlying
weight vector was F = [-1,1]T. The weights
were initialized to zero, the step size was p =
0.005, 02 = 024 = 1, and the SNR was varied
over 0, 10, 20, and » dB. The weight
trajectories were averaged over 100 independent
computer runs.

IV. THEORETICAL PREDICTIONS
Figures 2-4 display computer evaluations

of (2.5), (2.8) and (2.10) for 5000 learning

samples and the parameters used in the previous

1
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[ 2 Jo k()
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MC simulations. Figure 2 shows that the scale
factor k(n) has converged only for SNR = 0 dB.
The converged value agrees with that given by
(2.6), i.e., kgs = 0.707. Figure 3 shows that the
MSE has converged for SNR = 0 and nearly
converged for SNR = 10 dB; (2.9) yields 0.667
and 0.274, respectively, for the asymptotes.
Figure 4 shows that P has converged for SNR =
0, 10, and 20 dB; (2.10) yields 0.75, 0.90,
and 0.968, respectively, for the asymptotes.
Figure 4 indicates that, although the classification
performance of the perceptron is heavily
dependent on the SNR, the classification
performance relative to (2.11) is not. The
perceptron nearly achieves the classification
performance given by (2.10) after three or four
hundred samples and roughly independent of the
SNR.

V. CONCLUSIONS

A statistical analysis of the convergence
behavior of the single-layer backpropagation
algorithm for noisy Gaussian training data has
been presented. The analysis is based upon a
nonlinear system identification model of the
desired response signal which is capable of
generating an arbitrary hyperplane decision
boundary. It is demonstrated that, contrary to the
noise-free case [1], the weights converge to finite
values. The algorithm, on average, quickly
learns the correct hyperplane associated with the
system identification model but, because of the
noisy training data, the MSE is bounded away
from zero and the probability of correct
classification does not converge to unity (unlike
the noise-free cse presented in [2]). However,
the noisy training data does not have a significant
effect on the perceptron mean weights relative to
their fluctuations. Hence, one may conclude that
noisy training data has a relatively small effect on
the ability of the perceptron to learn the model
weight vector F. This behavior is probably due
to the time-averaging properties of the algorithm
during the learning phase.
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Fig. 1 - Single layer perceptron with desired
response model and noisy training data.
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Fig. 2 - Scale factor k(n) trajectories for SNR =
0, 10, 20, inf. dB (n = 0.005, o2=0,2=1).
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Fig. 3 - Mean-square-error trajectories for SNR
=0, 10, 20, inf. dB (n = 0.005, o2=0x2=1)
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Fig. 4 - Prob (Correct Classification) trajectories
for SNR = 0, 10, 20, inf. dB (u = 0.005,
02 = ze = 1).
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