IMPROVING DISCRIMINANT NEURAL NETWORK (DNN) DESIGN
BY THE USE OF PRINCIPAL COMPONENT ANALYSIS

Qi Li and Donald W. Tufts

Dept. of Electrical Engineering
University of Rhode Island, Kingston, RI 02881
tufts@ele.uri.edu and qli@ele.uri.edu

ABSTRACT

Investigations of the design of a Discriminant Neu-
ral Network (DNN) [1, 2, 3] have shown the advantages
of sequential design of hidden nodes and pruning of the
training data for improved classification and fast train-
ing time. The performance can be further improved by
adding the capability of a nonlinear, principal compo-
nent discriminant node. This type of hidden node is
useful for separating classes which have common mean
vectors and are overlapped on one other.

1. INTRODUCTION

A neural network architecture called a Discriminant
Neural Network (DNN) and an associated design method
were presented in [1, 2]. For several simulated and real
classification problems, the DNN performances show
advantages relative to several other training methods,
such as linear discriminant analysis and modified ra-
dial basis functions, and the training is much faster
than backpropagation and radial basis function net-
works (1, 2, 3].

The concept of DNN design is based on sequen-

tial discriminant analysis and pruning of training data. .

We sequentially design hidden nodes one by one. In
each hidden node design, a corresponding discriminant
node or a small set of discriminant nodes and associ-
ated threshold values are computed to provide best in-
cremental improvement in classification. Then a subset
of the training data which has been well-enough clas-
sified by the current hidden node is pruned and only
the residual subset of training data is carried over to
design the succeeding hidden nodes.

In this paper we improve the design procedure by
providing an additional discriminant option for the de-
sign of each hidden node, or a small set of hidden nodes.

As shown in Figure 1, the DNN has two layers, one
hidden layer and one output layer. The hidden layer
consists of hidden nodes. Each hidden node forms one
or several parallel hyperplanes to partition the input

3375

pattern space into regions. Several hyperplanes are
used when we approximate a nonlinear discriminant.
Each classification region is represented by a set of bi-
nary words which are the outputs of the hidden nodes.

DNN outpaat

Figure 1: One of implementations for a Discrim-
inant Neural Network (DNN).

The output of one of the biased hardlimiters of one
hidden node in response to a given data vector x is y =
f(xtw) in which x'w is the inner product of the input
vector x and weight vector w. The biased hardlimiter
function, f(.), is specified by the formula,

o1, xtw> 6,
f(x W)—{O, xtwse, (1)

in which 8 is a threshold value which can also be con-
sidered as a bias for the argument of the nonlinearity.
Several hardlimiters are allowed for any one of the hid-
den nodes.

2. GAUSSIAN DISCRIMINANT NODE
The single hidden node design algorithm is motivated

by optimal multivariate Gaussian classification. When
two training data populations Class 1 and Class 2 are

0-7803-2431-5/95 $4.00 © 1995 IEEE

described as multivariate Gaussian distributions with
sample mean vectors and covariance matrices puy, %)
and po, X respectively, the minimum-cost classifica-
tion rule is given by [4, 5]:

Classl: L(x) > 8; Class2:L(x)<6; (2)
where x is an observed data vector or feature vector of
N components and & is a threshold determined by the

cost ratio, the prior probability ratio, and the determi-
nants of the covariance matrices, and

L(x) xH(ET -2)x - 2t BT - ud B)x (3)

N
= Z ,\.-lx‘W,-l? - QWQX,

t=1

where Wy = (p{ 27" — pb¥5 ') and for i > 0, A; and
W; are the i'th eigenvalue and eigenvector for matrix
2! - ;1. We define the equation(3) as a Gaussian
Discriminant Node. It’s implementation is shown in
Figure 2(a).

When the covariance matrices in (3) are the same,
the first, quadratic term is zero, and the above classi-
fier computes Fisher’s linear discriminant. The general
node becomes a Fisher’s node, Figure 2(b). When the
second term can be ignored, the above formulas only
have the first quadratic term. Due to the sequential
design procedure, in each DNN design step we only use
the eigenvector associated with the largest eigenvalue
or a small number of principal eigenvectors. Thus, we
use the quadratic node as shown in Figure 2(c). The
thresholded squaring function can be further approxi-
mated by two thresholds as in Figure 2(d).

3. PRINCIPAL COMPONENT (PC)
HIDDEN NODE DESIGN

When the mean vectors of training classes are not too
close to one other, Fisher’s node is effective and has
been presented in [1, 2] for hidden node design. How-
ever, when the mean vectors of the training classes are
too close, Fisher’s linear discriminant analysis does not
provide good classification. Then we should use the
quadratic node, or approximate it by a PC node.

3.1. Principal Component Discriminant Analy-
sis

To design a quadratic node directly for non-qaussian
data, we use the following criterion for an alternate dis-
criminant: We choose a weight vector W to maximize
a discriminant signal-to-noise ratio J.

© @

Figure 2: (a) A single gaussian discriminant
node. (b) A Fisher’s node. (c) A quadratic
node. (d) An approximation of the quadratic
node.

_ E{(XiW)HX\W)} W'nW
T E{(X.W){X W)} T Wi, W’

where X; is a matrix of row vectors of training data
from class I. X, is the matrix of training data from
all classes except X;. The class [is the class which has
the largest eigenvalue among the eigenvalues calculated
from the data matrices of each class respectively. ¥
and ¥, are the estimated covariance matrices and W
is the weight vector. In the case that mean vectors are
same but not zero, the criteria still can be used. The
weight vector W can be determined by solving the fol-
lowing generalized eigenvalue and eigenvector problem.

J

(4)

W = \E W, (5)

The eigenvector associated with the largest eigen-
value provide the maximum value of J. However, more
than one weight vector can be selected to improve the
discriminant analysis. In other words, more than one
quadratic hidden node can be trained by solving the
eigenvalue problem once.

We note that for non-gaussian classes it can be use-
ful to replace the estimated covariance matrices in (4)
by estimated correlation matrices.

3376

3.2. Relation to the Optimal Gaussian Classi-
fier

The PC of the previous section is intended for non-
gaussian common-mean-vector classes, we prove as fol-
lows that it approximates the discriminant capability
of a Gaussian classifier when the class data are from
Gaussian distributions with zero mean vectors.

Let W = £;/%V and V = Y?W. The equation
(4) can be further written as

S VEIPREMY visv
= ViV = Viy ? (6)

where § = X/ t/ 2242{ 12 The singular value de-
composition (SVD) is S = UAU?. The A is a diag-
nal matrix of eigenvalues. The maximum occurs when
V = Uy, where Uj is the eigenvector associated with
the largest eigenvalue A; of A. Thus, the weight vector
for which J of (4) is a maximum is

W =x71/%U,. (7)

The classification functions of this quadratic node are
Class 1: [x!T;712U0L2 > ¢ (8)

Class c: |x*'T;V2UL2 < ¢, 9)

where 8’ is a classification thresholds.

This can provide a good approximation to the per-
formance of the gaussian classifier. The classification
rule in (3) now can be written as

Lix) = x(Z7'-3)x
—_ xtzc—t/2(I _ 22/221—12;”2)2;—1/2}(,
= xtz;—t/Z(I _ S—l)z;—l/2x,
= x'T;7UI - ATHULS 2,
N
= Y (1-1/2)'EVAULP, (10)
i=1
Take the first component from formula (10). The clas-
sification function is same as the quadratic node in (8)
and (9).
Furthermore, if we use two thresholds to approxi-

mate the square function in Figure 2(c), the classifica-
tion rules of (8) and (9) becomes

Class | : 8; < x*'T;V?U, <6, (11)
Class ¢ : x!2;1/2U; > 8y, or x*T7V2U, < 6;. (12)

The implementation of (11) and (12) is shown in Figure
2(d). It is a normal DNN hidden node as defined in
Figure 1. The thresholds, 4; and 8-, can be determined
from the histograms of the two classes of data after
projection onto one dimension [2].

4. A DESIGN EXAMPLE

A design example is shown in Figure 3. The training
data set in Figure 3(a) includes two classes of data
both having Gaussian distributions with zero means,
so they are overlapped on each other. The data of
Class 1 has 1000 samples represented as “o”, and Class
2 has 500 samples presented as “x”. The test data set
is shown in Figure 3(b). A gaussian classifier and a
general node as in equations (3) and (11) was designed
with the threshold 8 = 0. The classification boundaries
are shown in Figure 3(b) also.

The data-adaptive design method proposed in Sec-
tion 3 was applied to design a classifer with low mis-
classification rate for the same data set. We first de-
signed a classifier using two quadratic nodes. The first
quadratic node is designed as equations (8) and (9)
with entire training data set. The determined thresh-
old value is §; = —4.52. The classification boundaries
of the designed first node is shown in Figure 3(c), then
the well-enough classified portion of Class 1 was pruned
from the training data set as shown in Figure 3(d). The
second quadratic node is designed as the first one but
using the residual data set. The classification bound-
aries of the second node are shown from Figure 3(d)
with 8; = —8.34. The partationed regions are shown
in Figure 3(g).

When we removed the well-enough classified por-
tion of the Class 2 from Figure 3(d), the residual data
set in the center specifies the overlapped portion of the
two classes. We define the overlapped region as an un-
certain region. It defines a third class, Class 3, as the
uncertain class. The uncertain class arise when the
misclassification rate between Class 1 and Class 2 - the
classes of interest would otherwise be larger than per-
mitted for the application of interest.

The PC nodes are also applied in this example. The
first PC node was designed using all the training data.
The two hyperplanes associated with the two thresh-
olds of the first node are shown in Figure 3(e). Then,
the well-enough classified data was pruned, and the
residual data set was used to design the second hidden
node, Figure 3(f). The hyperplanes of the designed
DNN classifier are shown with the testing data set in
Figure 3(h). The partitioned region in the center is an
uncertain region.

The confusion matrices of designed classifier are
listed in Table 1. The traditional Gaussian classifier in
Table 1(a) has high misclassification rates of 6.6% and
11.4%. The classifier designed by the data-adaptive
method and using the quadratic nodes has the perfor-
mance, in Table 1(b), on the misclassification rates of
0.2% and 0.4%. The performance of the DNN designed

3377

o\

f:‘igt;re Ei(a) Two classes of -trai-ning data. Fig-
ure 3(b) Test data set and the boundaries of a
Gaussian classifier and a general node.

) 00
\ ’
.

\

-=‘ \ -2

44444

1
]
]
]
.

v H
]
T
1

1

1

]

f?igure .‘_S(c) Design the first q—uad-ratic node with
8 = -4.52. Figure 3(d) Design the second
quadratic node with 8 = -8.34.

-1

R

Figure 3(e) The classification boundaries of the
first DNIN node. Figure 3(f) The residual train-
ing data set and the classification boundaries of
the second DNN node.

'
L} Va A
\ 29 ° i -
¥

L

) —_—
3 .

f?‘igure 3(g) The test data set and the classifi-
cation regions partitioned by quadratic nodes.

Figure 3(h) The test data set and the classifica-
tion regions partitioned by DNN classifier.

using two thresholds to approximate the square func-

tions has the misclassification rates of 0.1% and 0.0%,
Table 1{c), which are close to the performance of the
quadratic nodes but the implementation is simpler. The
low misclassification rates are obtained by reducing the
classification rates, so the classification rates in (b) and
(c) are lower than (a). However, it is useful in some ap-
plications which need very low misclassification rate.

—__ Table 1. Confusion Matrices
C1 C2 Cl C2 Uncertain

C11934% 6.6% Ci1(71.3% 02% 225%
C21114% 88.6% C2| 04% 61.4% 38.2%

(@ (b)

C1 C2 Uncertain

C1|723% 0.1% 27.6%
C2| 00% 61.8% 38.2%

©
(a) The performance of the optimal Gaussian
classifier and general node as in figure 3(b). (b)
The performance of using two quadratic nodes
as in Figure 3(g). (c) The performance of DNN
using two linear nodes with two thresholds on
each of them as in Figure 3(h).

5. REFERENCES

(1] Q. Li and D.W. Tufts, “Synthesizing neural net-
works by sequential addition of hidden nodes,”
Proc. IEEE International Conference on Neural
Networks, pp. 708-713, Orlando, Florida, June
1994.

[2] Q. Li and D.W. Tufts, “Discriminant networks: a
simple, effective, and rapidly trainable class of neu-
ral networks,” Submitted to the IEEF Trans. on
Neural Networks, February 1994.

[3] Q. Li, D.W. Tufts, R.J. Duhaime, and P.V. Au-
gustFast, “Training Algorithms for Large Data Sets
with Application to Classification of Multispectral
Images,” Proc. IEEE 28th Asilomar Conference,
Pacific Grove, CA, October 1994.

[4] R.A. Johnson and D.W. Wichern, “Applied multi-
variate statistical analysis”, pp. 470-530, New Jer-
sey: Prentice Hall, 1988.

[5] L.L. Scharf, Statistical Signal Processing, Reading
MA: Addison-Wesley, 1990.

3378

