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ABSTRACT

A left (resp. right) principal singular subspace of di-
mension p is the subspace spanned by the p left (resp.
right) singular vectors corresponding to the p largest
singular values of the cross-correlation matrix of two
stochastic processes. In this paper, we study the global
dynamics of a system of nonlinear ordinary differential
equations (ODEs) that govern the unsupervised Heb-
bian learning of left and right principal singular sub-
spaces from samples of the two stochastic processes. In
particular, we show that these equations admit a simple
Lyapunov function when they are restricted to a well
defined smooth, compact manifold, and that they are
related to a matrix Riccati differential equation. More-
over, we show that in the case p = 1, the solutions of
these ODEs can be given in closed form.

1. INTRODUCTION

Let x € R™ and y € R™ be two zero-mean random
vectors with a cross-correlation matrix C = E[yx7] €
Rm*n We will assume that m > n. The i-th left and
right singular vectors, u; and v;, of C are defined as
follows [Golub and Van Loan, 1983, p. 17]

Cv; =s;u; and CTu; = s;v;

where s; is the ¢-th singular value of the matrix C. We
will assume that these singular values are indexed in
the descending order 51 > 52> ...2 8 > s, =0...=
Sm, where r is the rank of the matrix C. An easy
computation shows that the left (resp. right) singular
vectors of C are nothing but the eigenvectors of the
symmetric, positive, semidefinite matrix CT C € ®"*#
(resp. CCT € R™*™). A left (resp. right) singular
subspace of dimension p is a subspace of R" (resp. ™)
spanned by p left (resp. right) singular vectors. The
principal singular subspaces are those spanned by the p
singular vectors corresponding to the p largest singular
values. Based on the left and right singular vectors, we
can write the singular value decomposition (SVD) of
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the rectangular matrix C as
r
C= ZS,‘U,‘V.-T. (1)
i=1

This decomposition 1s such that the matrices V, =
[vi,...,v+] and U, = [uy,...,u,] have orthonormal
columns.

The principal singular vectors of the cross-correlation
matrix encode the directions, in both the space of the
x signal and the space of the y signal, that support
the major “common” features of both signals. Know-
ing the matrix C, one can use numerical algorithms
of SVD type (see, for instance, Golub and Van Loan,
(1], Chapter 2) to compute the left and right singular
vectors.

In many signal processing and automatic control
applications, e.g., adaptive filtering and adaptive con-
trol, we have no direct access to the matrix C, either
because this matrix is too large to fit in a real-time
application, or because, as in a nonstationary environ-
ment, it is time-dependent, which makes its real-time
computation burdensome. In some adaptive control
applications [2], the matrix C represents the unknown
plant “transfer function” from inputs to outputs, and
the problem, couched in a control language, becomes
how to learn and control the major “modes” of the
plant without having to identify the plant’s full transfer
matrix. Hence, the problem of computing the singular
vectors using directly data samples is both of theoreti-
cal interest and of practical importance.

2. MAJOR SINGULAR VECTORS

2.1. Single-Neuron Equations

The major singular vectors are the left and right singu-
lar vectors corresponding to the largest singular value.
Denote by 1(k) and r{k) the respective estimates at
time k of the left and right major singular vectors. The
neuron of the major singular vectors has two compo-
nents, left and right, that are coupled to each other.
The vectors 1(k) and r(k) represent the weights of left

0-7803-2431-5/95 $4.00 © 1995 |IEEE



and right connection layers. The output of the right
component is p(k) 4 r(k)Tx(k), and that of the left

component is A(k) 2 1(k)Ty(k). The update equations
for the right and left weight vectors are given by

I(k+1) = 1(k)+n(y(k) - LE)AE))p(K) (2)
r(k+1) = r(k)+ n(x(k) - x(k)p(k))ACk) (3)

where, as in Oja’s Hebbian rule for principal component
analysis (PCA) [4], we have subtracted the nonlinear
terms 1(k)A(k)p(k) and r(k)p(k)A(k) to stabilize the
growth of the estimates 1(k) and r(k), respectively. In
the above update rules, 7 is a positive parameter con-
trolling the step size. The linear terms in the update
equations correspond to a form of “mutual” Hebbian
learning between the left and right estimates that was
called, in a recent paper (3], the “cross-coupled Hebbian
rule.” Taking the conditional means across equations
(3) and (2) given 1(k) and r(k) and letting the time
step At = n — 0 give the following system of nonlinear
ordinary differential equations:

i = cr-1Tc¢r (4)
P = CTl-r"CTl (5)

Note that if x(k) = y(k), the matrix C will be symmet-
ric, positive, semidefinite, and each one of the ODEs
above generates a trajectory identical to the one gen-
erated by the well-known, single-neuron Qja equation
if the initial conditions are such that 1o = ry.

2.2. Closed-Form Solutions

Oja’s single-neuron equation converges exponentially
to the major principal subspace from any initial con-
dition. This fact has been known for a long time via
simulations and has been proved rigorously only very
recently [5, 6]. Diamantaras and Kung [3] stated a sim-
ilar observation for equations (4) and (5), also based on
simulations. This exponential behavior should not be
surprising, since these equations look very similar to
Oja’s, and the method used in [5] to find a closed-form
solution of Oja’ equation can be adapted to this con-
text as well. Let lg and ro be two arbitrary initial
conditions, and define the square, symmetric, positive,
semidefinite matrices A 2 CccT,B 2 CTC. Then we
have, for (4) and (5), the following trajectories

() = (f(A)lo+{Co(t*B)ro) /n(t)  (6)
r(t) = (tCTg(tzA)lo—i-f(tzB)ro)/n(t) (M

where n(t) is a positive, continuous function of time
that can be explicitly given in terms of C and the initial
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conditions, while the functions f and g are defined by
the absolutely convergent series

The derivation of Equations (6) and (7) is lengthy and
is omitted here because of limited space. Just to par-
tially check the correctness of the above result, we note
that when C is square and symmetric (Oja’s single-
neuron equation), and the initial conditions are such

that 1o = r¢ 2 wy, we have

F(E2A)lo + 1Cq(B)ry =
tCTg(tZA)lo—Ff(tzB)l‘o = etho,

which is the numerator of Oja’s single-neuron solution
as found in [5, 6]. It can be easily seen that the numera-
tors in equations (6) and (7) correspond to the solutions
of the “unstable” cross-coupled Hebbian equations

i=Cr and r=CT],

while the normalizing function n(t) corresponds to the
stabilizing nonlinearities. When the matrix C has full
rank, the matrix B is invertible, and one can show that
the numerator of (7) takes the more familiar form

cosh(iB)ry + sinh(tB)B~1CT 1,

which 1s consistent with the experimentally observed
[3] exponential behavior of (4) and (5).

3. SINGULAR SUBSPACE DYNAMICS

3.1. Multineuron Equations

For the case of a system of p interconnected neurons
processing two sequences of random vectors x(k) € R",
and y(k) € R™ with p < n < m, the left (resp. right)
connection weights are represented by the matrix L €
R™XP (resp. R € R**P) | where the j-th column of
L (resp. R) represents the left (resp. right) weight
vector for the j-th neuron. The vectors of left (resp.
right) outputs at time k are given by A{k) € R? (resp.
R(k) € ®P), where

Ak) =LT(k)y(k)  R(k) = RT(k)x(k)
The left and right weight matrices are updated accord-
ing to

L(k+1)
R(k+1) =

L(k) + AL(k)
R(k) + AR(k)
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where
AL(K) = np(y(k)R(k)T - L(B)AK)R(K)T )y (k)T)
AR(k) = n(x(k)AK)T — R(EYR(K)A(R)T)x(k)T)

If x and y have zero mean, the conditional means of
AL(k) and AR(k) given L(k) and R(k) evolve in the
continuous-time limit according to the matrix equa-
tions

L = CR-LLTCR (8)
R = CTL-RRTCTL (9)

Equations (8) and (9), which extend Oja’s matrix equa-
tion [4] to the case where the matrix C is arbitrary, re-
duce to Equations (4) and (5) in the special case p = 1.

3.2. Invariant Sets

In this subsection, we study some of the invariant sets
under the flow of Equations (8) and (9). For any pair
of integers (g,7),¢ > r, define the set

Sor 2{X eR"XTX =1,}, (10)

where I, is the identity matrix of order r. The above
set is a smooth, compact manifold of dimension ¢qr —
%q(q+1) known as the Stiefel manifold [6]. The product
set Spmp X Sn,p is also a smooth, compact manifold for
which we have the following

Proposition 1 The product manifold Spnp %X Sy, ts
invariant under the flow of equations (8) end (9).

Proof: Easy algebra shows that

;Z(LT L)=RTCTL(,, — LTL) + (I, ~ LTL)LTCR

—%(RTR) =LTCR(I, -RTR) + (I, - RTR)RTCTL

The above equations show that if the initial condition
(Lo, Rg) € SmpXSn p then the trajectory (L(t), R(1)) €
Sm,p X Snp forallt > 0. |

The invariance of Sy, p X Sy p justifies the restriction
of singular subspace dynamics to this set. This can
be easily done by picking up the initial condition so
that the columns of the initial left and right matrix are
orthonormal.

Another invariant set that will be essential for the
derivation of the Riccati flow corresponding to Equa-
tions (8) and (9) is the following

Tp(C) £ {(X,Y) € ™ x %" ?|XTCY = YTCTX).

To prove that £,(C) is indeed invariant, denote by
72 LTCR, and compute

‘fi_? =RTcTCrR+LTcCTL-227 - 72772,

Now note that the right-hand side is symmetric, which
means that

d d
E(LTCR) = E(RTCTL)

Therefore if (Lo, Ro) € I,(C) then (L(t), R(t)) € £,(C)
for all t > 0.

3.3. Equilibrium Points

To find the equilibrium points (L*, R*) of Equations
(8) and (9), we define the two symmetric matrices

PER'RT and Q2L'L'T.
Then at equilibrium, we have
CR*'-QCR*=0 and CTL*-PCTL*=0
from which we can deduce the equalities:
CP=QcC, cTcp=pPCTc, ccTqQ=qccT.

Since we are interested in equilibrium points for which
the matrices R* and L* have orthonormal columns, we
comsider only the flow on the product manifold Sy, p x

Snp-

Proposition 2 The equilibrium points of (8) and (9)
on Sy p X Spp correspond lo matrices P and Q such
that P is an orthogonal projection on a p-dimensional
right singular subspace of C and Q is the orthogonal
projeclion on the corresponding p-dimensional left sin-
gular subspace. Moreover, the only stable equilibrium
poinis are lhose for which P and Q are orthogonal
projections on the right and left principal singular sub-
spaces of dimension p.

The first part of this proposition can be proved using
the above equalities satisfied by P and Q and Lemma
Alin [4]. The stability part can be proved using a per-
turbation argument around equilibrium matrices (L*, R*)
whose columns do not span left and right principal sin-
gular subspaces. An alternative is to use the Lyapunov-
like function defined in the next section. As a corollary
of the above proposition, one can state that the number

of equilibrium points of (8) and (9) is at least 17(—:—!7)?'
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3.4. Lyapunov-like Function

In [3], it was shown that the function
I”Cr
el

is a Lyapunov function for the coupled equations (4)
and (5), from which it was concluded that the major
left and right singular subspace are globally asymptot-
ically stable if s5; > s3 > ... > s,. Global asymptotic
stability is much harder to show in the multineuron
case. However, if the flow of the multineuron singular
subspace dynamics is restricted to the invariant prod-
uct set Spmp X Snp, then we can show the following

V(l,r) =5 -

Proposition 3 The scalar function
V(L,R) = —tr(LTCR)

is sirictly decreasing along the trajectories of (8) and
(9) on the invariant set Sy p X Snp.

Proof: Along the trajectories of (8) and (9), we have

%V(L, R) = -—ir(LTCR)-tr(LTCR)
= —tr(RTCT(1, - LLT)CR)
tr(LTC(I, — RRT)CTL).

Because the flow is restricted to Spp X Spp, both

I,, & I, — LLT and II, 2 I, — RRT are orthogo-

nal projections, and therefore

tr(RTcTll,,CR) = |[|I,CR|% >0
tr(LTcn,cTL) I0,CTL|Z >0

where the subscript F' denotes the matrix Frobenius
norm. Note now that £V(L',R’) = 0 if and only if
(L', R') is an equilibrium point of (8) and (9). The re-
sult follows immediately from the above trace inequal-
ities. ]

An important consequence of the above proposition
is that the flow on S, p x Sn p cannot exhibit sustained
oscillations.

3.5. Riccati Equation
Finally, define the two (m + n) x (m + n) symmetric

matrices
T T
C]andMé[LL RL ]

k2| 9
“lcT o LRT RRT

and assume that the initial condition (Lo, Ro) € Z,(C).
Then M satisfies the following matrix differential Ric-
cati equation (DRE)

M = MK + KM — MKM.

As shown in [6], the matrix DRE corresponding to the
multineuron Oja equation plays an essential role in the
derivation of closed-form solutions for Oja’s principal
subspace networks. The DRE derived above for sin-
gular subspace networks should play a similar role, at
least in the case when the flow of (8) and (9) is re-
stricted to the invariant set X,(C).

4. CONCLUSION "

In this paper, we have investigated the dynamics of
left and right singular subspace unsupervised learn-
ing as defined by a straightforward extension of Oja’s
multineuron equation for principal subspace learning.
Among our results are a characterization of the closed-
form solution for the major left and right singular sub-
space and a characterization of the equilibrium points
on the invariant manifold corresponding to left and
right matrices with orthonormal columns. The flow
on this manifold admits a Lyapunov-like function that
is strictly decreasing along any trajectory that is not
an equilibrium point. Finally, we have shown that the
singular subspace dynamics is, like the eigen subspace
dynamics, related to a matrix differential Riccati equa-
tion. There is a wealth of information [6] about the Ric-
cati equation that can be readily used to derive other
fundamental results on the dynamics of singular sub-
space networks.
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