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ABSTRACT

In minimum mean square estimation, an estimate #’ of the
random parameter vector @ is obtained from an input vector
y. In this paper, we develop bounds on the variances of
elements of §’-8 for the case where input signal vector y and
the parameter vector # are non-Gaussian. First, we use linear
transformations to obtain a new parameter vector ¢ from @
and a new input vector X from y. These new vectors are
approximately Gaussian because of the central limit theorem,
so stochastic Cramer-Rao bounds on the variance of ¢’ - ¢
are tight. Lastly, bounds on variances of elements of ¢’-8 are
obtained.

I. INTRODUCTION

In minimum mean square estimation {1], a random
parameter vector @ is to be estimated from a noisy input
vector y. For the additive noise case, elements of y are
modelled as

y(n) = s'(B,n) + e(n) a

where s’(8,n) is the nth element of the N-dimensional signal
vector §’(0) and e(n) is additive noise with covariance matrix
C.. The independent variable n may or may not represent
discrete time.

Neural networks can be used to estimate @ from y.
Recently, it has been shown that the training error for such
neural network estimators is minimized when the neural
network approximates the minimum mean square estimator
E[8|y] [2]. For the case where both the input signal and
parameter vectors are jointly Gaussian, the performance of
the estimator is easily characterized by the stochastic Cramer-
Rao bound, which is obtained from the stochastic Fisher
information matrix (FIM), J;MAP[1,2]. Here the superscript

3367

MAP denotes maximum a posteriori. In neural network
applications, the bounds represent target values for the
network training error (mean-squared error). When this
target is reached, training can be stopped. Failure of the
training error to reach the bounds alerts the user to the fact
that further or better training is necessary, or that a larger
network 1is required.

When the elements of @ are not jointly Gaussian,
the Fisher information matrix may be impossible to calculate,
or the bounds may be too small. Let #” denote an estimate of
0. In this paper, we develop bounds on the variances of
elements of #’-@ for the case where the input signal y and the
parameter vector § are non-Gaussian.

Let the pseudo stochastic FIM, JMA?, denote a
matrix which can be processed into bounds on var(§’-9) as if
it were the stochastic Fisher Information Matrix J,¥Af. Our
goal is to show that in the limit as the dimension of ¢
increases, the equation

B = B - ¢ @

is correct for non-Gaussian distributed parameter case, where
C, is the covariance matrix of @ and J,M® is the regular FIM
for nonrandom parameters.

II. TRANSFORMATIONS OF INPUT AND
PARAMETER VECTORS

Assume that the input vector y and parameter
vector @ are non-Gaussian. It is well-known that the
stochastic Cramer-Rao bounds are usually not tight for this
case. Our goals here are to convert the input vector y and
parameter vector 8 to a new input vector x and parameter
vector ¢ with approximately Gaussian probability density
functions (pdfs).
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A. Input Signal Vector

Assume that the input vector y is put through a
linear transformation, as x = B ¢y, before it is fed into the
estimator. The signal and noise components of x are s’(9) and
n respectively. The noise covariance matrix C, is

C, = BC,BT

The vector x is approximately Gaussian because of the
central limit theorem [3]. The matrix B can be chosen in at
least two ways. First, it can be a transformation matrix used
for compressing the inputs down to a manageable number,
while minimizing the degradation of the estimates [4].
Second, B may represent the weights which feed the input
vector y into net functions [5] of a multilayer perceptron
(MLP). The non-stochastic log likelihood function for 4 is

K = In(p, 6] ) =C-Z(x-sOnYC;" (e-s0.1)

where C denotes a constant.

B. Parameter Vector

Following the same procedure used for the input
vectors, we want to transform the parameter vectors as ¢ =
A * 0. The covariance matrix for ¢ is easily shown to be

C, = ACyAT

Here, we want to constrain A such that the elements of ¢ are
approximately statistically independent, and C, is diagonal.
We choose the matrix A as

A =PS

where S denotes a diagonal matrix which normalizes the
clements of @ to unit variance and where the matrix P
denotes an orthogonal matrix such as the DCT transformation
matrix. Clearly then, many matrices A exist. As the
dimension M of @ increases, ¢ becomes Gaussian via the
central limit theorem.

II1. STEPS IN THE DERIVATION

In this section, our goal is to find the FIM for ¢
and use it to find an approximate FIM for @. First, relevant
conditional pdfs are found as

P.p(x1) = p (x-5(6))
Pee®|®) = P exlA ')

The non-stochastic log likelihood function for ¢ is now found
as

AYE = I, ,&[6)

- C—%(x—s(A"¢))’c;'(x—s(A"¢»

where C is a constant. Similarly, the a priori log likelihood
function for ¢ is

Ay = Intpy)

which can be approximated via the central limit theorem as

A = —%(d)—m J7Cyl(b-my

1 M M
= __Z_EE (b, —my(m)) b, (mn) (b,-m,(n))

m=] n=1

&)

where b,(m,n) denotes an element of matrix C,"' and my(m)
denotes an element of the mean vector m, .

The next step in the derivation is to find the
stochastic FIM J‘,W for parameter vector ¢. Elements of
JMA® are found as

‘ A any™® ANy any”
J,i)) = E,[E +E,
3@ = EJE[ a0, 30, 11+E,[ %, Bdb,]
Using,
MLE -
——agi =(—-——as(;‘¢:“’))’c;‘(x-s(A"¢»/

Ny~ Tt OS(AT)
= (x- cl(=——*
, (x-s(A7$)TC, ( 1 )

the first part of the FIM is found as

3 MLE A;"-E
EE(——)——
BN
-t -1
~EJ(EADyrerig st oy x-sea o) TIC; (L
64), a¢j

as(A"cl)) -1 as(A'l(b)
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- 35(6) 11, 35(6)
DIPIL V- AL %, C;l( %, N

k=1 m=1

where d,; denotes an element of Al
Using the Gaussian approximation of the pdf of ¢,

a AP M
'y ==Y byGiym) (p-my(m)
ad’j m=1
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32 O, m )b in)

ay ¥
a‘;: = —5,.2-1 b¢("n)(¢,. ""Q(”)) -

M
= =Y b,(,n)(d,-my(n))

n=l

Elements of the a priori part of the stochastic FIM are found
as

AT aNst M u
E,l N R Y Y byGm) byGin) c (nm) = b,Gy)
a¢, a¢j m=ln=1

where c,(m,n) denotes an element of matrix C,.

Next, J;4° is found in terms of J,ME (the FIM for
nonrandom parameters) and C, (the covariance matrix of 8.)
as

I =D Bl A D G

=AD" a
and
o =ATIS A= E I 1Y @

Lastly, we need to establish that J;*® has a useful
relationship to our estimation error variances. Let C, 4 and
C,, denote covariance matrice for - and ¢’-¢
respectively. We can get

- AT
C., + = AC, A
It is obvious that off-diagonal elements of C,. 4 and C,., are
zero. The eestimation error variances can be written as

Var@/-4) = [ Cyy 1,
Var®'-6) = [ Cyy ],

where [W]; denotes the ith diagonal element of the matrix
Ww.

Cramer-Rao bounds for parameter vector ¢ are
diagonal elements of (J,M*M)! so

Var@-¢) > [ 134D 1,
[Cyydy 2l @ADT D1 a1y,
[ACygAT], 2 [A JMN1AT],

[Cyely 21 (j:l” )Ny

The expression for this pseudo stochastic FIM }MAP is the
same one used when the parameter vector 8 is Gaussian.
However, we have now shown that it can be used for non-
Gaussian parameter vectors when M is sufficiently large.
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