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ABSTRACT

Traditionally, adaptive learning systems are classified into two
distinct paradigms---supervised and unsupervised learning.
Although a lot of results have been published in these two
learning paradigms, the relations between them have been
seldom investigated, In this paper we focus on the relationship
between the two kinds of learning and show that in a linear
network the supervised leaming with mean square error(MSE)
criterion is equivalent to the basic ant-Hebbian leaming rule
when the desired signal is a zero mean random noise
independent of the input. At least for this case there is a simple
relationship between the two apparent different learning
paradigms.

1. INTRODUCTION

During the past three decades there has been a considerable
increase of interest in adaptive learning system. Many differ-
ent approaches have been proposed for the design of engineer-
ing systems which exhibit adaptation and learning capabilities.

Generally speaking, most learning systems can be divided into
one of two learning paradigms---supervised and unsupervised.
It is accepted that the distinction between these two kinds of
learning system resides on whether a teacher signal is used in
learning. In learning with supervision, it is traditionally
assumed that at each time instant we know in advance the
desired response for the learning system, and we use the dif-
ference between the desired signal and the actual response to
correct its behavior {1]. In the unsuperviséd learning frame-
work, an internal adaptation constraint must be specified and
the system does self-learning based on this underlying rule. It
is generally accepted that the supervised and the unsupervised
learning are totally different learning methods. But, we believe
that the way constrains are placed in the optimization is really
the fundamental difference between the two learning methods.
When unsupervised learning is used the output of the net is not
directly constrained, but in fact an implicit input output rela-
tionship is being specified. Nadal and Parga showed that the
maximum information that can be stored in the weights
adapted with supervised learning is equal to the maximum
information that can be transmitted by a dual network learning
with the unsupervised model [2). In our paper, we study the
relation between Hebbian learning and MSE learning, and we
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show that MSE learning defaults to anti-Hebbian when the
desired signal is a zero mean random noise.

2. A RELATION BETWEEN SUPER-
VISED AND UNSUPERVISED LEARING

1.1. Unsupervised learning.
Unsupervised learning is depicted in Figure 1. The learning

goal is not specified as an output response and learning is done
based on some underlying rule.
input signal output

> A learning system »
based on underlying rule

Figure 1 The unsupervised system

The most famous unsupervised learning rule is the so-called
Hebbian rule [3], which adapts the learning system based on
its input and output data vectors

Awij(t) = nF(yi(t)Xj(l)) )

where 1 is the step size, F(.,.) is a function of both postsynap-
tic and presynaptic activities, X (t) is the input vector
(presynaptic activities), v; (t) is the output vector
(postsynaptic activities), A Wi (t) is the learning net-
work’s weight increment vector, and t is the discrete-time vari-
able which is assumed finite. In all the analysis in this paper,
we assume that the input and the desired signal are finite
sequences for simplicity.

As a special case of Eq. (1), we may write
Awij () = LA (t)xj 6 )
which is sometimes referred to as the activity product rule [3].

If a negative sign is put in the right side of (2), we get the anti-
Hebbian rule which has the form

Awij () = -ny; (1) X (1) &)

1.2, Supervised learning
In the supervised learning framework, learning is done on the

basis of direct comparison of the system output with a known
correct answer (desired signal), which can be represented as in
Figure 2.
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Usually, the mean square error (MSE) is selected as the criterion
because of its analytical simplicity and good properties.

\ desired signal
input signal 2 lear\ing
—
syste!

output

Figure 2 The supervised learning system

The MSE has the form:
1
e =3, (&) -y ()2 @
1

where yi(t) is the output of the learning system, and
d (t) is the corresponding desired output.

Let’s consider supervised learning with MSE in a linear network.
The output of the network is

Yi (1) = wij 0 xj (1 )
where wij is the weight connecting the input xj to the output
Yi

The adaptation rule is
A wij () =-nV wijs =7 (di (1) —Y; (t))xj (v

= -y Ox O+ OX 0 ©

where V  represents the gradient operator.

Assuming x. (t) and d.(t) are random sequences, expec-
tation is needkd in both sides of (6), hence, we get

E(A wii (D) = —nE (y; (0% (1) = ¢; (0 x; (1))
= -nE (y; (1) xj(t)) +1]E(di(t)xj(t)) )

Notice that the first term in the right hand side(RHS) of (7) is the
anti-Hebbian rule given in (3) and the second term in the RHS of
(7) is the forced Hebbian. In forced Hebbian, the output variable
in Hebbian learning is substituted by the desired response. This
term implements nothing but correlation learning. Therefore, in a
linear network, learning with the MSE is equivalent to learning
with the combination of the forced Hebbian and the anti-Hebbian
rule.

1.3. Relationship between MSE and Hebbian learning

The traditional view is that in unsupervised learning the network

output is decided by the underlying adaptation rule and the
input data, and then cannot be specified in advance. But, Eq.
(7) shows that there is an explicit relation between weight
adaptation with MSE and a linear combination of two Heb-
bian like terms, involving both the input, cutput and desired
response. So for this case we can prove the following:

Proposition 1: In a linear network the MSE learning defaults

to anti-Hebbian learning when the desired signal is a zero

mean random sequence independent of x, () , or
d, (t) and x; (t) are orthogonal.

In fact, the forced Hebbian in the right hand side of (7)
becomes zero, and then

E(Aw;(0) = ME(;(0x(©0)  ®

The proof is straightforward and is omitted. Comparing (8)
with (3) which is the anti-Hebbian rule in the deterministic
form, it is clear that they have the same form in a stochastic
environment. Therefore, we conclude that when training
with anti-Hebbian learning, the implicit desired signal in a
MSE framework can be viewed as a zero mean random
noise. Intuitively random noise should lead to some form of
unsupervised learning since it does not provide any knowl-
edge for learning.

Proposition 2:The anti-Hebbian rule is equivalent to the
MSE when the desired signal is a zero mean random noise.
In order to prove this proposition, we will use the minimiza-
tion of the system output energy.
Proof: Eq. (4) can be written into

e = %E(Z(dim —yi(o)2) ®
i

It is not difficult to show [4] that Eq. (9) is equal to
1
e=3E{) () ~E{(4())/ ()N
1

FE{Y var ((d,(1)/ (x()))} (10
i

When the desired signal di is a random noise with zero
mean, E {di/x} = (0 , the second term in Eq. (10)
is independent of the weights, so minimizing Eq. (10) is
equivalent to minimizing the output energy function

e=3E{Y ()2 an
1

Minimizing Eq. (11) in a linear network can be accom-
plished by a stochastic gradient-descent search with anti-
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Hebbian rule[5].
w(t+1) = w() —nx()y () 12)

Eq. (12) is an implementation of the anti-Hebbian adaptation
rule.

3. SIMULATION RESULTS

In order to verify the theoretic analysis given above, we provide
some computer simulation results in this section. First of all, we
analyze the anti-Hebbian learning (we do the experiments with
anti-Hebbian rule instead of Hebbian rule due to the instability of
Hebbian rule) for understanding better the equivalence between
the supervised and the unsupervised learning.

3.1. Anti-Hebbian learning and its representation in signal space

The basic linear network for unsupervised learning is shown in
Figure 3.

X

X2

Figure3 A linear network with one output unit

be the input vector,

Let x = [X,, X9 ceen X}
1’2
’] n be the weight vector, and the

w = [wl, Woy W
scalar y be the output.

The vector representation of anti-Hebbian learning of Eq. 3 has
the form of

Aw(n) = -ny(n)x(n) (a3)
And in a linear network, we know the output
y(n) = wmx(m7T (19

where T denotes the transpose operator.

Eq. (13) tells us that A w (n) is the outer product of the output
and the input vector. When the output y is a scalar, each
A w(n) is parallel 1o the input space. Hence, the cumulative
weight vector increment w, . which is defined as the differ-
ence between the final weilg%%rgnd the initial weight vectors is
also parallel to the input space. We can describe the relationship
among vectors in the anti-Hebbian learning in a signal space as
given in Figure 4,

w. .
mere

Yfinal 7 Yinitial

A

input space

Figure 4 The signal space description of the
anti-Hebbian learning

.whcrc w,irhitial represents 'th'c initial weight vector, w finlal
is the weight vector after training, and Winers S the cumula-
tive increment of the weight vector during a%aptation.

The cumulative weight vector is a very important variable
since it represents the new information the network learns
from the training data set with a given learning rule.

It is very useful to notice in the anti-Hebbian learning that the
w, . is parallel to the input space in each learning step and
incr . s .

the Haal weight vector Weina] 1S just the orthogonal projec-
tion of the initial weight vector onto orthogonal complement
of the input space. Hence, the anti-Hebbian learning in a linear
network is a process to find the projection of the initial weight
vector onto the orthogonal complement of the input space.

.2. Compurer experimental results

The network used is depicted in Figure 3. The input signal is a
sinusoid with frequency 1/50 Hz which is shown in Figure 5.
The length of the segment data is 50. We do the experiment 20
times in order to see the statistical behavior with the same
input signal and different initial weight vector which is set ran-
domly. The cumulative of weight vector is shown in Figure 6
for the unsupervised anti-Hebbian learning and in Figure 7 for
the supervised learning using zero mean random noise as the
desired signal.

A sinuscid with frequency 1/50 Hz

- M L L

o 6 10 16 20 26 30 36 40 456 50

Figure 5 The input signal
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the cumulative of weight vectors for 20 times experiments

6 s 0 26 36 96 40 4 8o
Figure 6 Results for unsupervised learning

the cumulative of weight vectors for 20 times experiments

5 10 18 20 25 0 as -« 45 50

Figure 7 Results for supervised learning

Lx10™ the mean cumulative of weight vector

o s 10 15 20 25 30 s 40 45 B8O
dash ; mokd

Figure 8 The mean of cumulative of weight vectors
The results given in Figure 6 and Figure 7 are two sinusoid-like
waves and are parallel to the input signal in Figure 5 since they
have the same phase.

The mean values of the cumulative of weight vectors for the 20
times experiments are given in Figure 8. It is obvious that from
the statistical point of view the cumulative weight vectors are the
same in both learning paradigms. Therefore, we can conclude
from the simulation results that the supervised learning changes
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qualitatively into the unsupervised learning when the desired
signal is a zero mean random noise.

4, CONCLUSION

We revealed a relationship between the supervised MSE learn-
ing paradigm and the anti-Hebbian unsupervised learning for a
linear network. We showed that supervised MSE learning with
a zero mean random noise desired signal defaults to anti-Heb-
bian learning. Hence, it is immaterial to train the network with
either method.

There are some interesting implications of this work. First,
there may be also equivalent supervised formulations for the
other unsupervised paradigms (Sanger’s, competitive, etc.).
(We have already extended the results of this paper to nonlin-
ear neural networks which will be published elsewhere). Sec-
ond, this shows the fine relationship that exists between
supervised and unsupervised learning schemes. Instead of
being a dividing factor, more effort should be spent in trying to
unify supervised and unsupervised learning paradigms. Third,
the use of random noise as a desired signal was shown to be an
efficient way to train neural networks for transient detection
[6]. The random noise was used as the desired signal during
the background. Now we can say why this is a reasonable
choice. Effectively we were training the transient detector with
a mixture of supervised (during the occurrence of the tran-
sient), and anti-Hebbian (during the background) schemes.
Since anti-Hebbian minimizes the output norm, we were con-
fining the net output to small values during background with-
out explicitly using a lot of processing elements to impose this
constraint. Moreover, this combination of supervised/unsuper-
vised learning was attained using the same algorithm (MSE),
which was very easy to implement.
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