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ABSTRACT

A new approach is presented for time-series modeling and
prediction using recurrent neural networks(RNNs) and a
discrete wavelet transform(DWT). A specific DWT, based
. on the cubic spline wavelet, produces a set of wavelet co-
efficients from coarse to fine scale levels. The RNN has its
current output fed back to its input nodes, forming a nonlin-
ear autoregressive model for predicting future wavelet coef-
ficients. A predicted trend signal is obtained by constructing
the interpolation function from the predicted wavelet coeffi-
cients at the coarsest scale level, V;. This method has been
applied to intracranial pressure data collected from head
trauma patients in the intensive care unit. The method has
been shown to be more efficient than one which uses raw
data to train the RNN.

1. INTRODUCTION

To observe and predict physiological conditions for patients
in the intensive care unit(ICU), we have developed an auto-
matic ICU monitoring system[1]. This system acquires, dis-
plays, and analyzes raw data in real time. Intracranial pres-
sure(ICP), one of our acquired signals, sampled at 200Hz,
is an important indicator for judging the physiological con-
ditions of head trauma patients. Our past experience shows
that the training of a recurrent neural network(RNN) for
modeling several minutes of data would take hours to com-
plete. On the other hand, if we utilize data obtained over a
very short time interval, the system is not well-represented,
and the resulting model does not adequately characterize the
patient’s physiological state. Thus we decided to investigate
the prediction problem using a neural network in wavelet co-
efficient space. The approach is based on the well known
data reduction properties of the wavelet transform allowing
us to both rapidly train the network and predict trends in the
underlying data.
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In this work, we assume that ICP may be represented by
anonlinear autoregressive(AR) model and is cyclostationary
over a certain time interval. Our goal is to construct a system
model which is capable of predicting the ICP and eventually
the patient’s physiological condition.

This paper is organized as follows. In Section 2, we
briefly explain the concept of the DWT, computation of
wavelet coefficients, and present an example. Section 3
shows the structure of a RNN. In Section 4, we apply our
algorithm to predict the ICP trend based on predicting the
wavelet coefficients. Finally, the results are discussed in
Section 5.

2. A DISCRETE WAVELET TRANSFORM

A discrete wavelet transform(DWT)[2] is applied in our
method to reduce the training time of the neural network.
The motivation for using this DWT is the computation se-
quence, which allows us to compute wavelet coefficients
from coarse to fine scale levels efficiently.

The goal of the DWT is to approximate as closely as pos-
sibleany function in homogeneous sobolev space(2], HZ(I),
by summing interpolation functions at several scale levels
which are computed from a Multiresolution Analysis(MRA)
where [ is the interval, [0, L], for L € Z, and L > 4.

The MRA is constructed by shifting and dilating interior
and boundary scaling functions(¢(z), ¢5())[2] defined by,

oe)=53 (%) ere-an m

and
11 3 3
¢s(z) = %xi - Ezi +5( - 1?3 — 7 -23 @
where the subscript “+” of z, denotes z > 0.

By subsampling the raw data and interpolating with the
scaled cubic spline wavelet basis, we obtain the wavelet
coefficients at each scale level. Therefore, fewer number of
wavelet coefficients are obtained at coarse scale levels.
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2.1. Example

We apply the DWT to the ICP waveforms from coarse to
fine scale levels for four levels, i.e., V5, V1, V2, V3. Since the
ICP is digitized, we take every 128 samples as an integer
index set with respect to the interval I. Fig-1 shows the
DWT of approximately 30-second of ICP data. The solid
line in Fig-1 denotes the trend of the ICP.

From this figure, it may be observed that the projected
function at finer scale levels produces a better approxima-
tion of the ICP waveforms. On the other hand, finer scale
levels employ more wavelet coefficients to construct their
interpolation functions.

3. RECURRENT NEURAL NETWORK(RNN)

There are two network topologies in artificial neural net-

works, i.e. feedforward and recurrent neural networks(RNN).

The RNN which has feedback connections between layers
allows the dynamics of the signal to be captured.

The RNN employed in this research is shown in Fig-2.
In this network, we feed back only the output to the input
nodes with a time delay. Both nonlinear and linear functions
are employed in two hidden and one output layer. The RNN
in Fig-2 can be described by a nonlinear AR model(Eq.-
3)[3]{4] which matches our assumption

Fly(n—1),y(n = 2),y(n = 3),...,y(n — k))
for n, k€2, 3)

y(n) =

where y(n) is the current output of the system and F is a
nonlinear function including hidden and output layers.

The choice of the order for the nonlinear AR model is
also important. It is more difficult to formulate the order
of a nonlinear model than a linear one. In this paper, we
select the order based on the experimental results. As to the
structure of the multilayered network, we have utilized the
geometric pyramid rule[5]. The network structure we used
has 40 inputs, 1 output, 4 nodes in first hidden layer, and 2
nodes in second hidden layer, i.e., Nao 42 1.

3.1. Network Training and Prediction

In a supervised learning scheme, we utilized the back prop-
agation method[4] to optimize the 327 weights in this RNN.
The stopping criteria of the network training is based on an
objective function defined by the mean square error between
observed and estimated output where the observed output is
the data in the training set and the estimated output is the
output computed from the network. If the error is smaller
than a predetermined threshold, the network stops learning.
During the leaming process, the network feeds back the
observed output data to input layer.
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Figure 1: Projected functions of a sampled ICP signal using
DWTin (a) Vo, (b) VI = Vo & Wo, (©)V2 = Vi & W,, and
(d) V5 = V5 @ W5 levels, where the solid-line and dash-
line denote the projected functions and the raw ICP signal
respectively.
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Figure 2: A Recurrent Neural Network for Prediction: the
first and second hidden layers contain four and two nodes
respectively. Only one node is present at the output.

In this approach, we utilize the RNN in wavelet coeffi-
cient space, i.¢, the network predicts future wavelet coeffi-
cients based on the information in previous wavelet coeffi-
cients.

After the network stops learning, the desired weights in
the network are obtained. During the prediction process, the
network feeds back the estimated output data to the input
layer,

For the prediction process, the network starts to predict
the first output data(a wavelet coefficient) based on the initial
input data at input nodes which are obtained from the last 40
elements in the given training sequence. Next, the network
feeds back the estimated output data to input nodes at the
input layer with a time delay. We obtain predicted data by
repeating the above prediction process.

Then we construct the interpolation function based on the
predicted wavelet coefficients. Note that the interpolation
function in V4 is constructed by summing scaling functions
multiplied by appropriate coefficients. It is observed that

if the prediction error for wavelet coefficients is small, the -

predicted error in the interpolation function, i.e., predicted
trend function, is also small. This approach is shown in
Fig-3.

4. EXPERIMENTAL RESULTS

We have applied this approach to predict the trend of ICP
signals. In the ICP case, the predicted signal trend is the
interpolation function in V;. We predict the ICP trend by
predicting the wavelet coefficients. The wavelet coefficients
are obtained from interpolating samples of every other 128
points by scaling functions in V5.

Fig-4a displays the training result of the wavelet coeffi-
cients in V4, i.e., the coarsest level. The training sequence
consists of 501 wavelet coefficients(starting from index 50
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Figure 3: Block Diagram of Modeling and Prediction for
Projected ICP at V; scale level.

1o index 550) representing the raw ICP data over approxi-
mately 320 seconds as shown in Fig-4a. The first predicted
wavelet coefficient(index 551) is computed from the ini-
tial wavelet coefficients at input layer(index 511 - 550 in
the training sequence). Then the network feeds back the
estimated wavelet coefficient to the input layer recursively.

We predict the next 100 wavelet coefficients (corre-
sponding to approximately 64 seconds, index 551 - 600)
as shown in Fig-4b where the mean prediction error is ap-
proximately 6.5%. The total training time of this experiment
is approximately 120 seconds on a HP715/75 workstation.

By comparison, if we predict this same 64-seconds of
raw ICP waveform which contains 12800 samples, and uti-
lize the training sequence containing 320-seconds of ICP
waveform, corresponding to 64000 samples, the network
takes eight hours to train. Therefore, this approach signifi-
cantly reduces the training time.

In the prediction process, only the predicted wavelet
coefficients are fed back. The error between the predicted
and observed data is not utilized.

Once we know the coefficients {c_; }%_,, defined in
[2] for m,n > 0 from a RNN prediction, we construct the
interpolation function in [m + 3, n}form < n,and m,n €
Z4, i.e., the support interval of the predicted interpolation
function; note that the supports of boundary and interior
scaling functions are [0, 3] and [0, 4] respectively.

Fig-5 demonstrates the projected functions using pre-
dicted and observed coefficients in V5. The mean percent
error in Fig-5b is approximately 4.51%.

5. DISCUSSION

In this paper, we utilize a RNN in wavelet coefficients space.
We take advantage of botha MRA in DWT and the nonlinear
dynamic model contributed by the RNN.
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Figure 4: (a)Training result of wavelet coefficients in 1, (b)
Predicted(dashed) and observed(solid) values for the next
100 wavelet coefficients.
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Based on this approach, we can predict longer time in-
tervals of future data. However the prediction performance
also depends on the dynamics of the training set. If the
training set does not contain the entire system dynamics, the
prediction for a nonlinear dynamic system may be inade-
quate.

Since we use fewer coefficients to represent the raw data
over longer periods of time, our computational efficiency is
increased. Based on the experiments, this approach provides
a fast prediction of time-series trend; i.e., the computation
time in trend prediction time is reduced from hours to min-
utes by using the wavelet coefficients instead of raw data
in the RNN. our approach also appears experimentally to
be stable in predicting the physiological status of a patient.
This approach provides efficient prediction. Since thisDWT
computes wavelet coefficients from coarse to fine levels, the
computation of coefficients at finer scale levels, which are
not utilized, are avoided.

In the future, this approach may have the capability for
parallel training of multi-RNNs if wavelet coefficients are
available at several scale levels and each scale level has its
own network to train and predict the wavelet coefficients.
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Figure 5:

(a@)ICP Trend functions from predicted and ob-

served coefficients at Vj scale level. (dash and solid lines:
predicted and observed functions respectively.) (b) Percent
Error between two functions.
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