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ABSTRACT

Automatic feature extraction is a need in many current
applications, including the monitoring of industrial tocls. Currently
available approaches suffer from a number of shortcomings. The
Kohonen self-organizing neural network (SONN) has the potential
to act as a feature extractor, but we find it benefits from several
modifications. The purpose of these modifications is to cause
feature variations to be aligned with the SONN indices so that the
indices themselves can be used as measures of the features. The
modified SONN is applied to the dull tool monitoring problem, and
it is shown that the new algorithm extracts and characterizes useful
features of the data.

1. MOTIVATION FOR THIS WORK

Monitoring the evolution of machine tool performance is an
area in which manufacturing industries are very interested. Great
expense is potentially involved either in damaging a part by using
a dull tool or in attempting to avoid this damage by replacing tools
prematurely. Automatic on-line evaluation is thus a strong desire,
but current systems to this end are based on features chosen by
human observation of the data. While such systems have had
success on some applications [1,2], they are inherently biased
toward the use of features which humans can readily perceive and
model.

Figure 1 shows short-time Fourier transforms (spectrograms)
of vibration patterns from holes drilled using both sharp and dull
drills. It is easy to see that, for the dull tool, the main carrier
frequency has decreased and that a 9.7 kHz resonance has become
significant in amplitude. However, these features do not capture the
full complexity of the evolution of the dulling process. The desired
classification system would provide more information than is
available using these hand-selected features.

2. TRADITIONAL FEATURE EXTRACTION

Ideally, we would like to analyze the drilling vibration patterns
by applying an automatic feature extractor to them, i.e. finding new
variations which are present in the data set instead of being forced
to pre-determine which variations we are interested in. However,
the bulk of current automatic feature extraction is based on
clustering approaches developed not for vector time-sequences but
instead for single vectors (e.g. {4]). The ability of clusters to
express variation over a continuum is limited, because they
introduce artificial boundaries and because they contain no sense of
ordering. For example, a clustering method applied to the
spectrograms of Figure 1 might map all main resonances below
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Figure 1: Spectrograms of vibration patterns from sharp and
dull tools.

11.5 kHz to cluster A, resonances above 12 kHz to cluster B, and
resonances from 11.5-12 kHz to cluster C. Thus a tone which
moved smoothly through the frequency spectrum might be
represented unnaturally by a series of abrupt jumps between
disjoint and unordered clusters.

One commonly used approach to feature extraction which can
encode features over a continuum is principal component analysis
(PCA)[4]. This approach involves taking a high-dimensional data
set and extracting from it the directions of maximum variance. The
“features” which are then extracted are the projections of the input
data along these principal directions.

A restriction of the PCA approach,though, is the fact that it is
looking for features which are linear combinations of the input data
vector elements. Figure 2 shows a region of some of the principal
components trained on the drill spectrograms of Figure 1. The
feature which the components are attempting to express is the
frequency of the main carrier resonance, which varies from 11.2
kHz to around 12.5 kHz. However, these spectral vectors are
related in a nonlinear fashion to the locations of the main resonant
frequency, an as a result PCA is not able to express this feature
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Figure 2: Attempting to represent a frequency-variation fea-
ture using linear principal components. Different compo-
nents are sensitive to different regions of the spectrum, which
results in an awkward and inefficient encoding.

succinctly but instead clumps the spectrum up into correlated bins.
The ideal feature extractor would be able to express the frequency
feature as a single quantity.

3. KOHONEN SELF-ORGANIZING NEURAL NET-
WORKS

Kohonen has presented a type of feature extractor with the
potential to describe feature variation along a nonlinear continuum
[5]. His self-organizing neural networks (SONNs) take the form of
grids or other low-dimensional structures. The grid vertices are data
vectors, and when the SONN is being used in feature extraction an
input data vector maps to the most similar vector in the grid (i.e. the
SONN grid is thought of as a codebook and the encoding process is
the feature extraction process). In training, these grids are elastic
in that they respond to the training vectors by deformation. The
training vectors successively attract the nearby sections of the map,
and as a result the map becomes stretched out across the training
data set. SONNs have been shown useful in data analysis [9],
because they can provide low-dimensional representations of high-
dimensional data, and this makes it easy for a human to visualize
data clusters and relations. However, use in automatic feature
extraction is not as straightforward. These approaches usually
require a priori knowledge of which features are of interest [6], so
that the data vectors can be pre-labeled with their feature values.
The reason for this is that the actual map locations (e.g. the row and
column indices in a two-dimensional grid map) do not have a
consistent meaning across the map. The training algorithm does not
make use of the index structure of the map and as such may not
cause variation to be aligned with the grid [7]. As a result, there is
no consistent way to extract feature information from the SONN
output. Our objective is a feature map in which the index values
themselves can be used as measures of the data features [8).

4. MODIFICATIONS TO KOHONEN’S ALGORITHM

In the Kohonen SONN algorithm, the decision on where to
position a training vector on the map is based purely on which grid
vector is most similar to the training vector. We are instead

interested in basing this decision on which row and column are
most appropriate for the training vector. That is, we want to think
of grid locations as intersections of rows and columns; mapping a
data vector to a particular location should mean that it is similar to
the other vectors within the same column or row, since it will be
addressed with the same column or row index value. We achieve
this through three modifications:

1. In selecting the point to place a training vector for map
deformation, we base the choice not just on the map vector at that
location but also on all the vectors in the corresponding rows and
columns. This is achieved by the formation of a characteristic
vector for each row or column (i.e. the mean vector) which is
compared to the incoming training vector, or by comparing the
training vector to each member of the row or column.

2. Instead of effecting the deformation in a circular region, we
deform the map along the row and column of the center point. This
allows all vectors mapped to a particular row or column to affect
the characteristics of the entire row or column,

3. We use an expanding network similar to that of Rodrigues
and Almeida [10]. This facilitates the use of the first two
modifications by giving their effects a larger range in the early
training and then narrowing their focus as training progresses.

4.1 The Choice of an Appropriate Location for the
Training Vector

As mentioned previously, Kohonen’s SONN algorithm selects
an appropriate updating region for each training vector by centering
the region around the codevector most similar to the training vector,
that is the codevector which minimizes the function

dist{s,, neu(m, n)} 1

where dist{} is the distortion function being used to calculate the
relationship between vectors, s is the training vector and neu(m,n)
is the codebook vector from row m and column 7z, The modified
algorithm chooses the location (m,n) which minimizes the function

a(dist{sk, neu (m, n)})+ (1-a) (d,,,(n) +d_,,(m)) (2)

where

M
d,,(n) = dist{sk,Ai/I Y, (neu(m, n))} (3)
and =

¥ @

4. otumn (M) = dist{sk, N 2 (neu(m,n)) }
n=1

This expression (Equation 2) is a weighted sum of the original
distortion measure from Equation1 with two other measures
(Equations 3 and 4), a row distortion measure and a column
measure. The row measure is a comparison of the training vector to
the mean value of all the codevectors in the row being considered,
and the column measure is a comparison of the training vector to
the mean value of all the codevectors in the column being
considered. The result is that instead of making the choice for the
best location of the training vector based on a measure of the single
best element of the codebook, we are including a measure of the
best row and column as well. The parameter & controls the extent
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to which this new distortion measure is incorporated, with an o of
1 resulting in the use of the original distortion measure alone and
an ¢ of 0 causing the decision to be made based purely on the new
information. As aresult of this modification, the algorithm now has
an explicit knowledge of the index (row-and-column, in this case)
structure, which gives the algorithm an incentive to assign similar
vectors to a particular value of a given index, regardless of the
value of the other index.

4.2 Expanding Feature Variations Across the Codebook

The second element of the modifications we have made to the
original Kohonen algorithm is to introduce a codebook which
expands during training. This is similar to a variation proposed by
Rodrigues and Almeida [10], who were seeking a way to reduce the
amount of computation in the self-organizing process. We begin
with a small number of codewords to represent the range of features
in the training set, and then gradually increase the codebook size at
various points in training. The codebooks resolution is increased
through a linear interpolation to produce new neurons. For
example, a 2x2 codebook would be expanded to produce a 3x3
codebook by interpolating between each of the four neighbor pairs,
and the center neuron would be produced by finding the mean point
of all four vectors. At a later point in the training, the 3x3 network
could be expanded to a 5x5 network by repeating the process on
each 2x2 sub-block. These periodic expansions continue until the
desired network size is reached.

4.3 The Modification Region

One important issue which arises as a result of the expanding
network is the schedule over which the modification neighborhood
(the region of the codebook deformed by each training vector)
decreases in size. A neighborhood radius which covered a given
fraction of the network at the training step before an expansion
would cover a proportionally smaller fraction of the network after
the expansion. Rodrigues and Almeida [10] simply maintained a
constant radius of the modification neighborhood throughout the
training process (resulting in the fraction of the network covered by
this radius decreasing in distinct increments at the points where the
network expands). This is consistent with the spirit of the original
Kohonen algorithm [5] which decreased the radius of its
modification region at distinct increments. However, other
implementations of the Kohonen SONN [3] produced better results
by using a smoothly decreasing function. Therefore, we
implemented the modified SONN with a neighborhood which
increased at the moment of network expansion by an amount
proportional to the network expansions. The end result is that the
modification region decreases smoothly with respect to the size of
the overall map.

4.4 The Effects of the Modified Algorithm

The new method of training is an important variation on the
original algorithm. To begin with, we avoid producing a twisted
network because the network starts out untwisted and hence is
resistant to becoming twisted [10]. (A twisted network results when
nearby regions of space are represented by distant codebook
members and distant regions of space are represented by nearby
codebook members.) This is a notable step toward the achieving of

global structure for the network, because twisted networks are an
automatic contradiction to the idea that codewords which are
distant in the book should be different. (Fixed size networks can of
course avoid twisting with a large initial neighborhood and a slowly
shrinking modification neighborhood, but this greatly increases the
training time and results in unwanted sensitivity of the algorithm to
the neighborhood size parameters.) However, the major influence
of the expanding network is the way in which it interacts with the
row- and column-information described in Section4.l. As
mentioned, the column-information feature incorporates the
information about the appropriateness of particular rows and
columns into its decision on where to place the training vector for
updating the codebook. During the early parts of training using the
modified algorithm, each row and column encodes what will
eventually become a large strip of the final codebook. As a result,
the original row- and column-information decisions are in effect
decisions as to which global region of the codebook the training
vector will be placed in. The formation of new neurons by
interpolation causes the newly emerging regions which will be
present in the final codebook to be ordered, and the row and column
information causes this ordering to occur in a manner which is
aligned with the axes or indices of the codebook.

5. RESULTS

Industrial machine tools such as drills emit sounds while they
are being used, and the operators have noted that these sounds
change as the tool dulls. We are interested in applying an automatic
classification system to these sounds. The attachment of an
accelerometer to the machine enabled us to capture the vibration
patterns of the tool in process. Human analysis of the signals
resulted in the extraction of several features which were correlated
with dullness. However, this analysis also noted the presence of
more structure in the signal but it was not characterized nor was it
determined whether the information was related to the dullness of
the tool.

We calculated the spectrograms of the vibration patterns, and
used the spectral vectors as input data to train our modified SONN
feature extractor. The training vectors had a length of 192 (the
middle section of 256-point STFTs). The final codebook was of
size 5x5. There were 5 drilling sequences available, and training
was done on three sets at a time to enable the other two to serve as
test series. ’

Figure 3 shows a typical feature map, trained on holes from
three drills. The codebook is a two-dimensional 5x5 codebook,
shown row by row. It can be seen that the row index maps the main-
carrier frequency feature which had previously been detected by
human observation (this is the feature which PCA was unable to
map in Section 2). The column index, though, maps something
which had not been characterized by the human analysis: the
increasing broadband energy in the 13-14 kHz region.

To investigate the usefulness of the codebook as a measure of
this new feature, we can map a spectral vector sequence (the sharp
drill hole presented in Figure 1) using the codebook and plot the
resulting index sequence (shown in Figure 4). The result is a
sequence which is cyclical with the revolution of the drill. This
cycle is visible in the data, but it could not be easily described or
quantified. The SONN now gives us a simple numerical measure of
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Figure 3:A 5x5 SONN codebook trained on drill vibration
spectrograms. The 25 vectors are shown one row at a time,
with all 5 columns of a particular row drawn adjacently.
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Figure 4: The row lndex sequence produced by mapping a
spectrogram using the codebook of Figure 3 to map the spec-
trogram of the sharp drill hole in Figure 1.
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Figure 5:Using the index sequences to quantify long-term
changes by plotting the average index value for each hole in
the drilling sequence.

the feature. )

To determine whether the feature is related to the dulling
process, we can plot the average index values over the drilling
sequences. Figure 5 shows plots of this over one complete hole set

from sharp to dull (the codebook was trained on three other
sequences). It can be seen that the new feature (as well as the
previously identified feature) is indeed related to the sequence
progression and our feature extractor has made a contribution to our
ability to characterize the dulling process.

6. SUMMARY

Dull tool monitoring and many other time-series classification
applications currently require human selection of the appropriate
features for classification, which can miss subtle or complicated
features. Standard automatic feature extraction approaches which
do exist are single-vector clustering techniques poorly suited to
describing continuous variations which characterize the
information in time-series patterns. The Kohonen SONN provides
a method for describing these variations, but the output of this
mapping is not readily interpretable for further processing. We have
presented a modification of the Kohonen mapping which is
structured so that the map indices are measures of the features
found by the algorithm. This feature extractor has been applied to
dull tool monitoring problems and has been shown to be a useful
approach to extracting continuous feature variations and
characterizing them for further processing.
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