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ABSTRACT

For a variety of telephone applications it is sufficient to
realize a speech recognition system (SRS) with a system
vocabulary consisting of a few command words, digits, and
connected digits. However, in the development of a SRS
for application in telephone environment it has to be con-
sidered that the speech is bandpass limited and a high re-
cognition performance has to be guaranteed under speaker
independent and even adverse conditions. Furthermore, it
is important that the SRS is efficiently implementable.

Fully recurrent neural networks (FRNN) provide a new
approach for realizing a robust SRS with a single network.
FRNN are able to perform the process of feature scoring
discriminatively and independently of the length of the fea-
ture sequence. In SRS based on Hidden Markov Models
(HMM), different methods have to be applied for scoring
the feature vectors and for compensating the variations in
phone durations.

Here we report about investigations to realize a mono-
lithic SRS based on FRNN for telephone speech. Besides
isolated word recognition, the capability of FRNN-SRS to
deal with connected digit recognition is presented. Further-
more, it is shown how FRNN could be immunized against
several types of additive noise.

1. INTRODUCTION

SRS are faced with two basic problems. First, contextu-
al information between feature vectors must be exploited
during the feature scoring, i.e. the assigning of likelihood
values to a feature vector characterizing its belonging to
the phoneme or word categories. The more contextual in-
formation about a feature vector is taken into account in the
scoring process the more uniquely the likelihoods indicate a
specific category. The second basic problem in speech reco-
gnition is the compensation of variations in phone durations
which usually is performed by means of dynamic program-
ming methods. These algorithms are completely different
compared to that used for feature scoring and thus, lead
to a SRS with a heterogeneous structure which is not well
suited for efficient implementation.

One approach to get an efficiently implementable SRS
is to use FRNN. FRNN are the most general type of recur-
rent network because all neurons are interconnected. The
performance of FRNN is therefore not limited due to struc-
tural constraints. In principal FRNN represent a nonlinear
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dynamical system with memory. Consequently, it should
be possible to classify a feature sequence independently of
its length and thereby exploiting contextual information of
feature vectors automatically.

2. FULLY RECURRENT NEURAL
NETWORKS

Time discrete FRNN consist of fully connected neurons.
The neurons have identical structure and the connection
between two neurons possesses a minimum time delay of one
time step. Because of the recurrent structure, FRNN are
networks with dynamic behaviour and an infinite memory.

To distinguish between different types of neurons in a
FRNN, the set of input neurons are denoted as 7, the set of
hidden neurons as U, and the set of output neurons as O.
With each input pattern z(t) the activities of all neurons
are updated synchronously and then an output pattern is
emitted. The activity of neuron j at time ¢ + 1 is given by

hi(t+1) = Z wi;Ti(t),
i€UUT
z;(t+1) = Fj(h;(t +1))
with W = {w;y;} denoting the weight-matrix, F; a differen-
tiable activation function and z;(t) the activity of neuron i
at time t.

The dynamic behaviour of a time discrete FRNN up
to time ¢ can be described equivalently by a multi-layer-
-perceptron (MLP) with ¢ layers. Each layer of the MLP
consists of a copy of the FRNN neurons and the weights in
between the layers are the same. For calculating the weights
wi; a gradient descent algorithm called back-propagation
through time (BPTT) [3] can be applied. The objective
during weight training is to minimize the sum £({q,te) of
the quadratic errors over the time period (ta, .}, given by

te te

ot = > B = Y 33 () -m®)’
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where 2;(t) denotes the desired output function.
The weights are changed in direction of the error-grad-
ient according to
Oe(ta, te)
Aw;; = —p———"=—= ;
wij 5w n>0
né; (t)zi(t — 1)
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Figure 1: Truncated BPTT with ¢t = 5,t, = 2,{- =3 in a
FRNN with 1 input neuron, 1 hidden neuron, and 1 output
neuron

Starting at time ¢ = t., the actual weight change can be
calculated recursively for all times t < t.. Applying BPTT
iteratively leads to a decrease of the network-error &(ta, te)
till a minimum is reached.

Considering an efficient implementation of BPTT the
gradient calculation is limited to a time-period ¢, and BPTT
is initiated only once after every t, < ¢, time steps. In this
case &;(t) is calculated according to

e; () Fj (h;(t)) it=tg

es(OF}(h;i (1) + D winbu(t+1)F)(hs (1))
. _ kEUUO
Jj(t)— itp —te <t <1ip
> wirbu(t+1)Fj(hi ()i ta—t- <t <tp—t,
kEUUO

where tg denotes the time when an error back-propagation
is initiated and the error e;(¢) is defined by

e;(t) ={ 50 = () ;;g

Figure 1 illustrates the error back-propagation in this so-
called truncated BPTT [4]. The gradient resulting in trun-
cated BPTT is an approximation to the real gradient. The
discrepancy depends on the parameters ¢, and t,. Therefo-
re, t, and {, have to be optimized empirically for each task.

In simulation experiments the network size and the pa-
rameters 1, ty, {, were optimized for telephone bandlimited
speech recognition. For this task FRNN consisting of 52
input neurons, about 160 hidden neurons, and 11 or 23
output neurons, depending on the vocabulary, were used.
The feature vectors were processed in sets of 4 vectors of
dimension 13 in order to reduce the processing time. It was
found that a fast and reliable weight training can be done

by linearly decreasing 7 from 0.05 to 0.0 during 300 training
epochs. Error back-propagation initiated every ¢, = 30 ti-
me steps and considering the ¢, = 40 preceding time steps
turned out to be sufficient for learning of the relevant time
dependences.

3. SPEECH DATA

In simulation experiments FRNN-SRS were realized for the
recognition of isolated words as well as of connected digits.
The speech signals were transmitted over telephone line and
sampled with 8kHz. From these signals feature vectors were
extracted every 12ms, each consisting of 12 cepstral coeffi-
cients (Cep) derived from LPC parameters. Additionally, a
parameter characterizing the short-time energy of the signal
was used. In order to immunize the feature vectors against
telephone channel distortion the mean of each feature com-
ponent measured during an utterance was subtracted.

In the case of isolated word recognition the system vo-
cabulary consisted of the 11 German digits including the
word zwo and 12 command words for telephone services.
For computing of the SRS weight parameters, feature vec-
tors from 100 utterances of each word, spoken by different
male and female speakers, were used. Speaker independent
recognition rates were measured on a disjunct set contai-
ning 100 utterances of each word by speakers not included
in the training set. In the case of connected digit recogni-
tion the system vocabulary consists only of the 11 German
digits from which a data corpus of 50 different digit strings
were defined. The digit strings were composed of 3 digits
and were arranged in order to represent a hard task for a
SRS, e.g. in 13 strings a digit is followed by itself.

Each digit string was uttered by 120 different male and
female speakers. For training of the network parameters the
utterances of 60 speakers were used while the performance
of the SRS were measured at the set of utterances spoken
by the 60 different speakers not used for training.

4. RECOGNITION EXPERIMENTS

4.1. Isolated Word Recognition

In the case of isolated word recognition FRNN are trained to
estimate word likelihoods for groups of 4 consecutive feature
vectors. Word hypotheses were generated by accumulating
the likelihood values during the duration of an utterance.
The FRNN-SRS achieved a recognition rate of R23=97.1%
for 23 words and R;1=98.2% for the digits. The FRINN-
SRS outperforms SRS based on Discrete HMM (DHMM) or
Continuous HMM (CHMM) using the same features. SRS
based on DHMM, which uses Delta-Cep (DCep) represen-
ting dynamical information of the feature vectors explicitly,
achieves with R23=97.3% about the same recognition rate
as the FRNN-SRS [5]. This indicates that FRNN-SRS are
able to exploit automatically the information about the dy-
namic of the feature vectors.

4.2. Connected Digit Recognition

For the task of recognizing connected digits containing an
unknown number of digits the networks were also trained
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to estimate word likelihoods. A digit 7 in a digit string is
recognized if the condition

Oi(t) >0 ANOi(t+ A <O, ,At2>2

is true for the activity of the corresponding output neuron
O;. The threshold O; indicates the begin of a digit while
©. indicates the end. Via At a minimum word duration
constraint is introduced.

First recognition experiments were done with a FRNN-
SRS trained for recognizing isolated words. Only 19% of
the digit strings were recognized correctly. The correctness
of the single digits was 55%. The low recognrition rate,
compared to 98% obtained with digits spoken in isolation,
is due to the drastically increased dynamics of continuously
spoken digits.

In further experiments the network was trained with
feature vectors extracted from the digit strings, in order
to adapt the network parameters to these dynamics. The
FRNN-SRS trained with continuous speech achieved a re-
cognition rate of 75% for strings and a digit correctness of
94.4%. The rather low string recognition rate is due to word
deletions which occured in 23% of the test strings.

Interestingly, the FRNN-SRS trained with digit strings
recognized the isolated digit data base with an accuracy of
96.4%. This indicates that isolated digit recognition is in-
deed a subtask of connected digit recognition for the FRNN.

In Figure 2 the recognition process is illustrated for two
digit strings whose waveforms are shown in Figure 2a. As
can be seen from Figure 2b the exploitation of activities
of the output neurons by the above formulated condition
results in the deletion of the the word sechs. In order to a-
void this effect, an additional ouput neuron for detecting the
boundary between two digits was added to the FRNN-SRS.
The derivation of the activity of this neuron is multiplied
with the activities of the neurons representing the digits.
If the activity of the boundary neuron, which is shown in
Figure 2c, is incorporated in the digit scoring Figure 2d
results and a correct segmentation of the digit string is pos-
sible. The FRNN-SRS achieves in this case a recognition
rate for connected digits of 81% and on the word level an
accuracy of 93.2% and a correctness of 94.5%.

The analysis of the performance of the word boundary
neuron revealed that in case of a hard decision 88% of the
boundaries were correct. Most of the misclassifications oc-
curing on the digit string level are still due to a high amount
of deleted digits.

In order to test the recognition performance of FRNN-
SRS independently of word detection defects, a SRS based
on CHMM was used to segment the digit strings for re-
cognition with the FRNN-SRS. This simulates the task of
recognizing digit strings with a known number of digits.
Summing the FRNN scores in the segments belonging to
a digit and classifying the unknown digit according to the
neuron with maximum activity resulted in a string recogni-
tion rate of 94.2%. This rate is slightly higher than that of
the CHMM-SRS which shows that the discriminative pro-
perties of a FRNN lead to an increased recognition perfor-
mance.

/A, /8 1 /6 18/ ]2/
Figure 2: Waveform of the digit strings eins-acht-sieben,
sechs-sechs-zwei (a), activities of the output neurons (b),
activity of the word boundary neuron (c), and combined
digit scores (d)
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Figure 3: Recognition rates (R2s) of a noise immunized
FRNN-SRS for speech signals contaminated with WGN,
ON, and RCN at SNR levels ranging from 0dB to 30dB

4.3. Robustness of FRNN-SRS

In order to assess the robustness of FRNN-SRS, the reco-
gnition of utterances distorted by additive white gaussian
noise (WGN), by office noise (ON), and by running car noi-
se (RCN) recorded inside the cabin of a running car were
considered. The noise was added to a speech signal such
that a signal-to-noise ratio (SNR) between 0dB and 30dB
for each word resulted. It has been reported [6, 7] that SRS
based on DHMM or on MLP yield good recognition results
if the model parameters were trained with speech corrupted
by the same type of noise as the test signals.

Here we investigated the immunization capability of
FRNN-SRS. While the recognition performance of a FRNN-
SRS trained with clean speech dropped dramatically for
noisy speech, the noise-adapted FRNN-SRS showed signifi-
cantly improved recognition results for noisy speech while
the recognition rates for clean speech decreased only slight-
ly. Furthermore, we investigated whether a single FRNN-
SRS could be immunized against all three noise types at
different SNR levels simultanously. For this task the net-
work was trained with feature vectors derived from noise-
free and from RCN, WGN, and ON contaminated speech
signals with SNR-values of 0dB, 10dB, and 20dB. In order
to test the generalization of the extracted information, re-
coguition rates were also measured on vectors derived from
speech signals of the test sequence which were contamina-
ted with noise at SNR-levels not used for training. As can
be seen in Figure 3, the multi noise immunized FRINN-SRS
achieves significantly improved recognition results for all
noise types and SNR levels. At a high SNR above 20dB the
recognition rates of the immunized FRNN-SRS are compa-
rable to the rate obtained with clean speech independent of
the noise type. In the range between 20dB and 10dB the
decrease of the recognition rates are different for the noise
types but still above 85%. For SNR values below 10dB the
robustness of the immunized FRNN-SRS is not sufficient.
A comparison of these results with that reported in [6] show

that the immunized FRNN-SRS outperforms the DHMM-
SRS.

5. CONCLUSIONS AND
PERSPECTIVES

With FRNN it is possible to develop a speech recognizer
for speaker independent recognition of telephone command
words and isolated as well as connected digits which can be
efficiently implemented.

The results of the simulation experiments demonstra-
te that FRNN are able to extract information relevant for
speech recognition from noise contaminated speech and thus
achieve a robust recognition performance. While the reco-
gnition of isolated words can be performed with very high
recognition rate, the recognition of connected digits is a rat-
her hard task for the FRNN-SRS. The main problem is to
avoid word deletions in the task of recognizing digit strings
with unknown length. By introducing a word boundary
neuron the amount of deletions decreased but still remains
the main source of incorrectly recognized digit strings.

Current research is focused on a more sophisticated ex-
ploitation of the information delivered by the word bounda-
ry neuron. Furthermore, it will be investigated whether the
feature extraction of speech signals can also be incorporated
in the FRNN.

This work is supported by the Deulsche Forschungsge-
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