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ABSTRACT

A new neural tree network (NTN) -based speech recogni-
tion system is presented. NTN is a hierarchial classifier
that combines the properties of decision trees and feed-
forward neural networks. In the sub-word unit-based sys-
tem, the NTNs model the sub-word speech segments, while
the Viterbi algorithm is used for temporal alignment. Du-
rational probability is associated with each sub-word NTN.
An iterative algorithm is proposed for training the sub-word
NTNs. The sub-word NTN models, as well as the sub-
word segment boundaries within a vocabulary word, are
re-estimated. Thus, the proposed system is a homogeneous
neural network -based, sub-word unit-based, speech recog-
nition system. Furthermore, embedded within this word
model paradigm, multiple NTNs are trained for each sub-
word segment and their output decisions are combined or
fused to yield improved performance. The proposed dis-

criminatory training-based system did not perform favourably

as compared to a Hidden Markov model-based system. The
paradigm presented in this paper can be argued to represent
a class of discriminatory training-based, homogeneous (ver-
sus hybrid), sub-word unit-based, speech recognition sys-
tems. Hence, the results reported here can be generalized
to other similar systems.

1. INTRODUCTION

Aritificial Neural networks (ANNs) have been shown to be
very successful in classification of static speech patterns.
However, in general, they lack the capability of dealing with
dynamic pattern recognition tasks, such as speech recogni-
tion. Hidden markov models (HMMs), on the other hand,
are stochastic signal generative model and have been found
to be very successful for temporal pattern recognition prob-
lems. Nonetheless, HMMs also suffer from some inher-
ent limitations which opens up opportunities for alternate
paradigms. Hidden Markov modeling assumes an under-
lying probability density function (generally Gaussian) of
the observation vectors. Neural Networks (NNs), on the
other hand, can model arbitary probability distributions of
the observation vectors. Another limitation of HMMs is
that the exponential duration density is characteristic of
each state within a Markov chain. If an attempt is made
to model sub-word speech units (such as, phonemes) with

1 This research was supported through a grant (F30602-91-C-
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each state of a HMM, then this limitation may be notable.
Generally, the individual HMMs are trained separately by
maximum likelihood (ML) estimation. Although, recently
discriminant training algorithms have been proposed. Dis-
criminant training can be very useful when the training data
is limited. The training algorithms of neural networks are
inherently discriminative. Therefore, if the HMM states
are replaced by neural networks, the data vectors within
each state are being discriminantly trained against the data
vectors from other states. Motivated by the above observa-
tions, several hybrid Neural Network (NN) -Hidden Markov
model (HMM) systems have been recently proposed (for eg.,
[1, 2, 3]). In a “embedded”-type hybrid NN-HMM system
[1], the probabilitic output of the NN is used as an emission
probability for the underlying HMM; whereas, in a “post-
processor-type hybrid NN-HMM system [2, 3], the NN is
used to re-score the class hypotheses output by the under-
lying HMM.

The homogeneous, sub-word reural tree network (NTN)
-based word model paradigm presented in this paper has
several distinct differences with the “embedded”type hy-
brid NN-HMM systems. During the iterative training of
the word models, the sub-word segment boundaries are also
re-estimated. This is in contrast with most other hybrid
NN-HMM systems, which either use a database with hand-
labelled phonetic segments, or the estimates of the segment
boundaries derived from a previously trained HMM sys-
tem. Secondly, instead of using the transitional probability
of the underlying HMM, a durational probability function
is associated with each sub-word NTN.

A multiple classifier system can be a powerful solution
for robust pattern classification, because it allows for si-
multaneous use of arbitary feature descriptors and classi-
fication procedures [4, 5, 6]. For a given problem, each of
the classifiers could attain various degrees of success, but
none of them will give perfect performance. Ideally, a com-
bination function can be designed which would take advan-
tage of the strengths of the individual classifiers, avoid their
weaknesses and improve classification accuracy. Designing
multiple codebooks in a discrete HMM may be considered
as an attempt in this direction. In this paper, we present
experiments wherein each sub-word segment is modeled us-
ing multiple neural tree networks. Decision outputs of these
multiple NTNs can be combined properly to yield improved
recognition performance.
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PFigure 1: Typical word model with NNs modeling the sub-
word segments. The durational probability functions asso-
ciated with these sub-word segments are also shown.

2. NEURAL TREE NETWORK (NTN)

A neural tree network 7] is a hierarchial classifier that com-
bines the properties of decision trees and feed-forward neu-
ral networks. The NTN uses a tree-structure of discrimi-
nating elements, with the discriminants being implemented
using artificial neurons. The neuron uses all feature ele-
ments for the decision, hence the NTN is not constrained
to perpendicular discriminant boundaries as are the stan-
dard decision trees. The architecture of the NTN is deter-
mined during training, thus it is self-organizing. This is in
contrast to multi-layer perceptron neural networks, where
the architecture must be specified prior to training. NTNs
also offer an attractive tradeoff of classification speed versus
hardware implementation as compared to MLPs [7]. NTNs
have shown to perform favourably to other discriminatory
training-based classifiers (including, neural networks and
decision trees) in several pattern recognition tasks [7, 8).

2.1. Posterior probability estimation in NTN

A modified neural tree network (MNTN) was introduced
in [8]. Forward pruning technique was used while grow-
ing the tree. Since, the leaves of the pruned tree are likely
to have data from several classes, a “confidence” measure
is associated with each class. This “confidence” measure
is equivalent to estimating the posterior probability using
Parzens-window method in the region defined by a leaf. In
more recently proposed Continuous density NTN (CDNTN)
[9], local parametric models (generally, mixture of gaussian)
are created for each class at every leaf of a NTN.

Both MNTN and CDNTN have been used in the experi-
ments presented here.

3. WORD MODELING USING SUB-WORD
NEURAL TREE NETWORK

In the proposed system each vocabulary word is modeled
as a sequence of sub-word neural tree networks (SWNTNs).
A typical word model is shown in figure 1. A duration
probability function is associated with each sub-word neural
network. The number of sub-word neural networks in a
word model is generally set to be equal to the number of
phonemes present in the phonetic spelling of the word.

initialization:
set maz-iteration, word “confusability” threshold and
classification error (CE) threshold for convergence
for all words, Model-freeze = false
while iteration < maz-iteration
for all words
if not Model-freeze
Make word train-file
(using corresponding “confusable words”)
Train sub-word neural networks
Compute sub-word duration probabilities
Resegment sub-word boundaries
(forced alignment using Viterbs)
endif
endfor
for all words
Find classfication error (CE)
if CE < threshold
Save sub-word segmentation boundaries
Model-freeze
else
Find “confusable” words from the above step
endif
endfor
endwhile

Figure 2: Iterative training algorithm

8.1. Word model Scoring

Consider the task of scoring the model A,, given a sequence
of observation vectors O = {xi,-++,X¢, -+, X7}. Assume
that the output of the sub-word neural networks are nor-
malized so as to yield probabilitic values [8, 9]. The prob-
abilistic output b,; of the SWNTN g,; can then be inter-
preted as the a posterior probability P(X:/gvi,A») of the
observation vector x;, at time t, given the model A, and
SWNTN g¢,;. The durational probability d,; can be argued
to represent the probability P(g.:¢/A.) of being in state g,
at time ¢. The observation probability P(x:/\,) of vector
x; can then be written as:

P(xe/Ae) = > P(Xt/@ois Xa) P(goi/Aa) = Y _(buidns)
' ' (1)

The above equation can be approximated by considering
only the maximum value within the summation,

P(x:/X;) = m'ax(bv.'dv.') (2

Ifit can be assumed that the successive observations are
independent, then the joint probability of the sequence of
events can be written as the product of the probability of
the individual events.

T
P(O/Xs) = P(x1, %2+, xr/Ae) = [ P(xi/0)  (3)

i=1

Equation 3 gives the probability score of an observation
sequence O, given the word model A,. Equations 2 and
3 can be easily implemented using dynamic programming
techniques (Viterbi algorithm).
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3.2. Word model Training

The training of each word model is accomplished by using
a new iterative algorithm and consists of two steps: seg-
mentation and re-estimation. The segmentation is carried
out by forced alignment using the standard Viterbi algo-
rithm. Once the segmentation is produced, the weights of
the neural networks associated with each segment can be
trained. Given the sub-word segmentation at any iteration,
the durational probabilities can also be generated. These
steps are executed iteratively until convergence is reached.
At the end of each iteration, the classification capabilities
of the current model of each word is computed. The in-
formation obtained is used in two ways. The classification
error (CE) can be used as a convergence criterion. If the
CE drops below a pre-determined threshold, the model pa-
rameters of that word are “frozen”. The other advantage is
that the other vocabulary word models which are found to
be “confusable” with a word, can be used for the discrimi-
nant training of the model. The pseudo-code of the training
algorithm is illustrated in figure 2.

4. MULTIPLE CLASSIFIER FUSION

In several pattern recognition tasks, a proper combination
of various complementary classifiers have shown to improve
the performance over individual classifiers (4, 5, 6]. Use of
multiple classifier allows for simultaneous use of arbitary
feature descriptors and classification procedures. The vari-
ous feature descriptors may be derived from different anal-
ysis procedures, and hence may be in different forms (for
example, continuous valued, or binary valued, or the range
of their values may differ notably). In such a scenario, it
appears sensible to train a classifier for each feature set
and combine their outputs for the final decision. Also, for
a given problem, each of the various classification proce-
dures could attain various degrees of success, but none of
them will give perfect performance. Ideally, a combination
function can be designed which would take advantage of
the strengths of the individual classifiers, avoid their weak-
nesses and improve classification accuracy. Even when the
feature set used for pattern description and the classifica-
tion procedure used for recognition, is same in an ensemble
of classifiers, the concepts of multiple classifier fusion can
still be employed. The diversity in such an ensemble of clas-
sifiers can be planned through various means, for example
by training each of them on different subsets of the given
training data set, or different discriminant data sets (for
discriminative training-based classifiers) .

4.1. Decision combination in multiple classifiers

Several methods exist to combine the output of multiple
classifiers. The output information of a classification pro-
cedure can be divided into three levels, and the decision
combination can be done at any of these levels.

1. Class-label level : decision combination rules include,
majority voting and logical AND eperation (see for
eg., [4]).

2. Class-rank level : the objective of the decision com-
bination rule is to derive a consensus ranking, such
that the true class is ranked as close to the top as
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Figure 2: Histogram showing the consistency between the
obtained and the supplied phonetic boundaries in TIMIT

possible. Two commonly used approaches are called
class set reduction and class set reordering (see for
eg., [5]).

3. Class-score level : Most techniques of decision com-
bination at this level fall under two main categories:
Linear opinion pool and Logarithmic opinion pool
{see for eg., [10]).

LINEAR OPINION POOL: can be mathematically for-
mulated as :

K
P(z) = Z ag Pi(z) (4)

where, generally, the weights aj are chosen to be non-
negative and to satisfy the constraint ), ar = 1.
The weight ai reflects, in some manner, the relative
expertise of the kth classifier. There is no optimal
method to choose the weights. However, there are
a few suggested approaches, including equal weights
(cx = 1) and weights proportional to classifier rank-
3 — r

ing (ax = —Z—:_f..l_")

LOGARITHMIC OPINION POOL: can be mathematically
stated as:

k=K

P(z) = [ Pe(=)™ (5)
k=1

where ax’s are the weights and are often selected to
satisfy the unit-sum contraint. The logarithmic opin-
ion pool assumes to an extent that the individual
classifiers in the ensemble of K classifiers perform in-
dependent of each other (which may be the case, if
they are trained on independent feature sets, or in-
dependent training sets). Zeros in the logarithmic
opinion pool are vetoes, i.e., to say that if any expert
assigns Pi(z) = 0 the combined decision is also zero.
Similar to linear opinion pool, the weights ay’s reflect
in some way the relative expertise of the correspond-
ing classifier, and therefore similar weight selection
methods could be used. However, the weight selec-
tion for the logarithmic opinion pool is less intuitive
because of the product form of the rule.

Multiple neural tree networks can be trained to model
each sub-word segment in the word model paradigm out-
lined in section 3. The diversity within the neural network
ensemble can be obtained by training them on different dis-
criminant data sets.
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5. EXPERIMENTS

Isolated word recognition experiments were conducted to:
(1) check the precision of the phonetic segmentation that
was obtained at the end of the iterative training procedure,
(2) evaluate the recognition performance accuracy of the
proposed word model paradigm, and, (3) investigate the
multiple classifier concept. For the results reported here,
the spectral features used were FFT-derived, raised sine
window bandpass liftered, 12'*-order cepstral coefficients.
The number of sub-word NTNs in a word model were set
to be equal to the phonemes present in that word.
Ezperiments on TIMIT : The male speakers from the north
midland dialect region were chosen for the experiments.
With the help of the given time-aligned word transcriptions,
five words, namely, dark, suit, greasy, water and year, were
extracted from the “SA1”-type sentence of these speak-
ers. Speaker-independent, isolated word recognition ex-
periments were then performed on these extracted words.
Since the time-aligned phonetic transcriptions are also sup-
plied alongwith the database, the phonetic segmentation
obtained at the end of the iterative training procedure (out-
lined in figure 2) was compared against it. The histogram
in figure 4.1 shows the consistency between the phonetic
boundaries obtained by the algorithm and that given along-
with TIMIT database. The histogram shows that approx-
imately 90% of the phonetic boundaries obtained after the
convergence of the training algorithm, are within 20 milisec-
onds of the true boundary locations.

Ezperiments on TI-46 word : Isolated word recognition ex-
periments were done on the ten digits and the E-thyme set
{b, ¢, d, e g p, t, v, z} vocabularies extracted from the
TT1-46 word speech corpus. The standard speech recognition
techniques of dynamic time warping (DTW) and continu-
ous density Hidden Markov models (CD-HMM) ! were also
evaluated for the same task for comparison purposes. The
number of states in a HMM word model were set to be equal
to the number of phonemes in that word. There were about
48 training tokens and 128 testing tokens for each digit. The
table below organizes the performances obtained.

using using DTW HMM
CDNTN | MNTN
Digits | 88.7 % | 82.1 % | 71.4 % | 97.03 %
E-set 42.9 % 51.4 % | 62.8 % | 50.22* %

(* optimising the number of states, the best performance of
64.2 % can be obtained for 3 {emitting) states).

To investigate the multiple classifier concept, two neural
tree networks (shown as classifier A and B in the table be-
low) were trained for each sub-word segment. The diversity
in this network ensemble was obtained by training them
with different discriminant data sets. The results obtained
on the ten digit vocabulary are tabulated below.

classifier | classifier fusion classifier
A B logic fusion
874 % 83.9 % P = DA.DPB 92.7 %
874 % 83.9% [p=7% 0% | 85.9%
874 % 83.9% |p=0% 2% | 93.7%

Lusing, Cambridge University’s HTK software

6. CONCLUSION

A neural tree network -based speech recognition system was
presented. The NTNs were used to model sub-word speech
segments, while the Viterbi algorithm was used for tempo-
ral alignment. A durational probability function was as-
sociated with each sub-word speech segment. An iterative
training algorithm was outlined. The speech recognition
performance was further improved by utilizing the concepts
of multiple classifier fusion.

The word model presented in the paper was a homo-
geneous NN-based system, as opposed to hybrid NN-HMM
approaches reported elsewhere. Most hybrid NN-HMM sys-
tems discussed in the literature had outperformed base-
line HMM systems. However, the proposed word modeling
paradigm did not show that trend. The NTN has been re-
ported before to perform favourably as compared to other
discriminatory training-based classifiers. Therefore, it is
conjectured that the results of our study are representa-
tive of the proposed class of homogeneous NN-based speech
recognition systems.
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