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Abstract

This paper describes a new method of utilizing recurrent
neural networks (RNNs) for speech modeling and speech
recognition. For each particular speech unit, a fully
connected recurrent neural network is built such that the
static and dynamic speech characteristics are represented
simultaneously by a specific temporal pattern of neuron
activation states. By using the temporal RNN output, an
input utterance can be represented as a number of stationary
speech segments, which may be related to the basic phonetic
components of the speech unit. An efficient self-supervised
training algorithm has been developed for the RNN speech
model. The segmentation for input utterances and the
statistical modeling for individual phonetic segments are
performed interactively in this training process. Some
experimental results are used to demonstrate how the
proposed RNN speech model can be used effectively for
automatic recognition of isolated speech utterances.

1 Introduction

Artificial neural networks (ANN) have been applied to
automatic speech recognition in two different approaches
[1]. Conventional neural network models are widely used to
classify static patterns which are extracted from pre-
segmented speech. However, this pre-segmentation
procedure could be erroneous since the segment boundaries
are not clearly defined in many cases. This prevents the static
pattern classification method from attaining satisfactory
recognition performance. Furthermore, since only stationary
properties of individual segments are considered, the static
model is in incomplete as many useful temporal features of
the speech signal are ignored. More recently, neural network
models with delay connections or recurrent connections have
been introduced to deal with the time-varying nature of
speech signals [2][3]. Short-time acoustic features are
presented to the dynamic neural networks sequentially and
the recognition is based on temporal integration of the output
sequence. In other words, time is introduced as an additional
dimension of input feature space. To cope with the increased
complexity, a dynamic model usually requires a much
greater network size than a static one and is, therefore.
limited to small vocabulary applications.

In this paper we describe a novel approach of utilizing
recurrent neural networks for speech modeling and speech

3319

recognition. The One-Class-in-One-Network (OCON)
architecture [4] is employed. For each speech unit that
corresponds to a class of speech patterns with similar
acoustic properties, an RNN based dynamic model is built by
a well designed training process. In this approach, the speech
unit is modeled as an unseparable entity and pre-
segmentation procedure is not required. The speech unit
referred here may be a syllable, a word or even a sentence. It
can be divided into a set of acoustically stationary segments
that are concatenated in the time domain [5]. In the proposed
RNN speech model, the occurrence of each of these
segments is represented by the activation of a particular
output neuron. The temporal relationships of adjacent
segments are characterized by a specific sequential order
governing the changes of neuron activation states. Based on
the sequential output of the RNN, a temporal error function
is defined and is used as a distance measure between an input
utterance and the speech model. For speech recognition
applications, this error function will be used as the major
discrimination factor between different models.

2 Description of an RNN Speech Model

A fully connected RNN, as shown in Figure 1, is
adopted to model a particular speech unit I". The activation
level of the nth neuron y,(t), is given by the following
difference equation,

y.(t) = f[‘zv; w,yt -1+ iwmum(t):' §))]

where u,(t) is the mth input component at time ¢, w, is
the recurrent connection weight from the /th neuron to the
nth neuron, and w, is the connection weight from the mth
input component to the nth neuron. The operator f,(c) is the
sigmoid function. The feedforward weights that connect
input to the neurons are trained to recognize the static
features of individual speech segment while the recurrent
connections among neurons are used to characterize the
temporal variation of these features.

Suppose the speech unit I' consists of K acoustically
stationary segments. Each of these segments essentially
corresponds to a basic phonetic constituent of I'. In the
proposed RNN speech model, a phonetic segment is
represented by an output neuron in the RNN. Without loss of
generality, the first K neurons are selected as output
neurons. Let {@(I),@#(2),---, &)} be the short-time feature
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sequence obtained from an utterance U for T', where @(¢)
denotes the feature vector of analysis frame at time ¢ . To
relate a particular frame with, for example, the kth segment
of T', the kth output neuron is activated while the other
output neurons are inhibited, ie. y(f)— 10 and
y,(6) > 0.0 for allI<j<K and j#k. Thus the X
segments of [ are related to the K different activation
states of the dynamic RNN model. Let s(t) denote the
activation state of the RNN at time ¢ . Then a state sequence
{s(I), s(2),---, s(T)} is obtained from the network output by,

s(t) = arg'__;ftax{y‘. )} ' (2)

The temporal relationships of the K constituent segments
can be reflected by the following constraints on s(¢),

(1) s@)<s@,) if ¢, <t

(2) s@¢+D-s(t)=0 or s¢+1)—-s(t)=1

(3) Forall 1<k <K, thereexists ¢ such that s(t)=k

These constraints are imposed because of all segments
must occur in sequential order and that no segment is to be
skipped or omitted. A state sequence that fulfills conditions
(1)-(3) is referred as a valid state sequence. If the RNN
model is capable of producing a valid state sequence for the
input utterance {#(¢#)} , segmentation for the utterance can be
performed as follows,

1(k) = min{t|s(t) =k} 3)
where 1(k) denotes the beginning time instant of the kth
segment.

3 Training for an RNN Speech Model

A temporally supervised training algorithm has been
devised by Williams and Zipser [6] for RNNs. In this
algorithm, the RNN connection weights are adapted by
applying the gradient descent technique to a temporal error
function defined by,
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E=2222d0-50] )

where d, (t) and y,(t) are the desired output and the actual

output of the kth output neuron respectively. It appears that
Williams and Zipser’s method can be applied directly to the
training of the proposed RNN speech model since both
network architectures are exactly the same. However, the
derivation of the target output sequence {d(¢)} needs some

special consideration. In fact, a well defined target output
sequence is available only if the segmentation of the training
utterance is known prior to training. This is obviously
impractical, especially when a large amount of training data
is involved. Therefore an iterative self-segmentation
procedure is developed.

Let Q={U"U®,-.-,U”}a group of P training
utterances for the speech unit . Suppose the feature
sequence extracted from U® is denoted by {@(t)}. It is
reasonable to assume that all these training sequences

possess similar speech characteristics that are essential to I".
Now, when the feature vectors are presented to the RNN,
there are basically two different kinds of network responses.
Firstly, if a valid state sequence {s(¢)} is generated by (2), the
target output will be given by,
(L0 ifs()=k

d~(’)“{0.0 ifs(t) =k )

That is, {d()} is obtained from the RNN itself instead of

from external “supervisor”. Secondly, if the RNN does not
produce a valid state sequence, a hypothesized segmentation
is used to define the target output sequence. This situation
occurs most probably at the beginning of the training
process, or when a completely new utterance is being
applied. The hypothesized segmentation is very likely to be
inaccurate and will be replaced as soon as a self-generated
segmentation becomes available.

The complete training procedure is summarized by a
flowchart as shown in Figure 2. At the beginning, an initial
number of segments for T' is assumed. For the first training
data {#”(¢)}, an initial segmentation is used. The simplest
way of initializing such a segmentation is to divide the
utterance into even portions. Better estimation can be made
using energy profile and short-time zero-crossing rate. While
the RNN connection weights are being adjusted, the initial
segmentation is revised by equation (2) & (3) according to
the actual network response. Whenever the segmentation is
changed, the target output {d(r)} will be updated

accordingly and the training is continued. This iterative
process will be terminated when the self-generated
segmentation converges and the associated error function E
falls below a prescribed threshold. For each of the
subsequent training data, similar procedure is applied. Now,
since the RNN has been trained with training data from the
same class, it is increasingly probable that the RNN produces
a valid initial segmentation for a new training sequence.

It should be noted that some adjacent segments may be
combined with each other during the training because of
their similar features. Therefore the eventual number of
segments represented by the RNN speech model may be
smaller than the initial value.

The training process of an RNN speech model can be
further illustrated by the example shown in Figure 3. In this
example, an RNN that consists of 12 neurons is built for the
Cantonese syllable /tsam/ (Cantonese is a commonly used
Chinese dialect, and a typical monosyllabic and tonal
language). This syllable is composed of three phonemes,
namely /ts/, /a/ and /m/. The waveform and the spectrogram
of the beginning training utterance are displayed with aligned
time axis. The initial segmentation is obtained by dividing
the utterance evenly into 8 portions. Segments with similar
acoustic features are merged together as training proceeds
and the segment boundaries are also adjusted. Subsequently
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a 4-segment model is reached. The first two segments form
the non-continuant affricate /ts/ while the other two
correspond to the middle vowel /a/ and nasal ending /m/
respectively.

4 RNN Speech Modeils for Speech Recognition

The training of an RNN speech model is aimed at
producing a temporal representation, i.e. a valid state
sequence, for each and every training utterance. In addition,
the error function E associated with this state sequence is
minimized. In general, a small value of E implies a fairly
good modeling of the input utterance. For speech
recognition, the value of E can be used as the major
discrimination factor between different speech models. To
recognize an input utterance U, the output sequences from
all models are examined and only those models producing
valid state sequences will be considered for further decision.
From the remaining eligible models, the one with minimum

In single speaker speech recognition, data set A of a
speaker is used for training first while data set B from the
same speaker is used for testing. The training data set and the
test data set are later on swapped and the experiment is
repeated. The overall recognition rates for training data and
test data are found to be 95.3 % and 87.7 % respectively.

In the multi-speaker experiment, the training data
includes the data set A from all 5 speakers and the test data
includes all the data set B. Similar to the single speaker case,
the experiment is repeated with swapped combination of
training data and training data. It is observed that a
hypothesized initial segmentation is often needed when the
training utterance comes from a new speaker. Having been
trained with the first training utterance from each speaker,
the RNN is capable of generating valid segmentation for
most of the subsequent training utterances. The overall
recognition rates for training data and test data are found to
be 88.0 % and 82.9 % respectively.

value of E is selected to be the result of recognition. Recognition Accuracy Rejection Rate
The performance of this baseline recognition system has Digit | Single Speaker | Multi-Speaker | Single Speaker | Multi-Speaker
o . “0” 883 % 86.7 % 0.0 % 33%
been evaluated for the recognition of isolated Cantonese o 6.7 % 5.0 % 0.0 % 00%
digits “0” - “10”. Each of these digits, as shown in Table 1, 2" 95.0% 96.7 % 0.0 % 17 %
contains a single syllable. Therefore 11 RNN syllable models 3 85.0 % 183 % 8.3 % 6.7 %

d to be built. Th ber of ts found i h “4 85.0 % 90.0 % 83 % 83%
need to be built. The number of segments found in eac e 7% 00% 0 0% 100 %
syllable model is given in Table 1 for both single speaker ‘6" 85.0 % 633 % 0.0 % 0.0 %
and multi-speaker cases. B 7 % 8.3 % 0.0 % 0.0 %

3" 91.7% 90.0 % 0.0 % 0.0 %

Phonetic No. of segments found | No. of segments found 9" 80.0 % 883 % 00% 0.0%

Digit | Transcription | in the RNN models in the RNN models “10” 85.0% 850 % 0.0% 1.7%
ingl aker multi-speak ... ..

o i {sing e;}:e ) ¢ 3pe er) Table 2: Recognition Results for Isolated Cantonese Digits

mr it/ > 2 (Test Data)

sy i/ 1 . . .

: /S/L/ 3}4 3 The recognition results for the test data in both single

- Jseil 34 3 speaker and multi-speaker applications are given in Table 2.

57 full 1 ! By examining these results carefully, we note that

3 //:::/ ;i ; recognition errors are mainly due to the followings :

“8” /bat/ 2 2 (1) Inadequate Modeling

“9” fzau/ 3-4 3 . . . . .

10~ Isap] 23 3 Consider an input utterance in which the desired RNN

Table 1: The Cantonese Digits “0”-”10” and
the Constructed RNN Speech Model

The speech data for our experiments were obtained from
five male speakers. Each speaker was asked to produce 12
complete sets of the 11 digits, labeled as trial 1 to trial 12.
The odd number trials are grouped to form data set A and the
even number trials form data set B. For all utterances, speech
features are extracted every 10 ms with a 20 ms analysis
window and the feature vector consists of 13 components as,

[e,Ae,zcr,cep,,cepz,‘--,cep,,Acep,,,---,Acep,,]
where the first three components are the frame energy, delta
frame energy and frame zero-crossing rate respectively, cep;
and Acep, denote the ith cepstral coefficient and the jth delta
cepstral coefficient respectively.

speech model is unable to generate an invalid state sequence.
If none of the other RNN speech models produces a valid
state sequence, this utterance is rejected. Otherwise, it is
misclassified as another undesired syllable in which a valid
state sequence is present. In general, it is relatively easy for
an RNN speech model with smaller number of activation
states to generate valid state sequences. This is because the
temporal constraints, i.e. conditions (1)-(3) in Section 2, are
less probable to be violated when the total number of
segments becomes small. It is found from the experimental
results that a number of utterances are misclassified as
syllable “5” which is represented by a single-segment RNN.
For these utterances, the desired speech models are not
selected due to their inadequacy of generating valid state
sequences. The *“5” model is probably the only one that
produces valid state sequence and therefore it is selected.
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(2) Lack of Discriminative Training

The RNN speech models are being trained
independently but also individually as well. Therefore
although individual RNN model has learned about the
essential features of a particular syilable, it knows nothing
about how this syllable is different from the others. This is
why those syllables with one or more phonetic components
in common are easily confused. A typical confusion set
include the digits “1”, “7”, “8” and “10” which all share the
same vowel /a/. Besides, “6” and “9” could also be easily
confused due to the same vowel /u/. To reduce these
recognition errors, discriminative training has to be
incorporated. The basic idea of discriminative training is to
reduce the temporal error function for the desired RNN
speech model -and simultaneously increase the error
functions for all other models. Research work in this
direction is still on-going and preliminary results are quite
encouraging.
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Figure 3 : Training of an RNN Model for the Syllable
/tsam/ — An Example

REFERENCES

[1] Richard P. Lippmann, Review of Neural networks for Speech
Recognition, Neural Computation 1, pp.1 - 38, 1989.

[2] A.Waibel, T. Hanazawa, G. Hinton, K. Shikano and K. Lang,
Phoneme Recognition Using Time-Delay Neural Networks,
IEEE Trans. on ASSP, Vol. 37, No.3, pp.328 -339, 1989.

[31 A.J Robinson and F. Fallside, Static and Dynamic Error
Propagation Networks with Application to Speech Coding,
NIPS (edited by D. Anderson), pp.632 - 641, American
Institute of Physics, New York, 1988.

[4] S.Y.Kung, Digital Neural Networks, Prentice-Hall, Inc., 1993.

[5] Victor W. Zue, Acoustic Processing and Phonetic Analysis,
Trends in Speech Recognition (edited by Wayne A. Lea),
pp.101 - 124, Prentice Hall, Inc., 1980.

[6] Ronald J. Williams and David Zipser, A Learning Algorithm
for Continually Running Fully Recurrent Neural Networks,
Neural Computation I, pp.270 - 290, 1989.

initialize the RNN by randomly
setting the connection weights
between - 1.0 and 1.0

»]

present a new training sequence
to the RNN and obtain the state
sequence

obtain the target output
segmentation and obtain directly from the valid
the target output state sequence

!

train the RNN until the error
function £ cannot be further
reduced

hypothesize an initial

| P

o
revise the segmentation according
to the RNN output sequence

T

update the target output according
10 the revised segmentation

v

train the RNN with the updated
target output until £ cannot be
further reduced

v

no

E < Threshold
and segmentation
converges ?

Figure 2: Training Procedure for an RNN Speech Model
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