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ABSTRACT

In this paper, an artificial neural network (ANN) archi-
tecture for modeling the transitions between consecutive
phones is presented. These ‘phone transition’ models are
particularly suited for taking into account the coarticula-
tion phenomena in continuous speech. In order to obtain
robust and generalizing probability estimates, the evidences
of variable frame rate-based transition models and those of
context-independent segment-based phone models are com-
bined by means of an additional ANN, called the Transition
Controlled Neural Network (TCNN). The concept of the
transition approach was already introduced in [1], but in
this paper a new and more sophisticated implementation is
proposed and evaluated on a phone recognition task. The
new TCNN-approach significantly outperforms the old one.

1. INTRODUCTION

Although the aim of acoustic-phonetic decoding is to trans-
form the acoustic continuum of speech into a sequence of
discrete linguistic units, the speech signal is not a sequence
of independent discrete events. This implies that the acous-
tical realization of a phone is partly determined by the iden-
tities of the preceding and the following phone (and, in
general to a smaller extent, by the further context). More-
over, some phones, such as voiced stops [2] and nasals (3],
are preferably described by formant transitions towards the
phone and away from the phone.

A common way of dealing with these coarticulation
phenomena, is by using context-dependent phone mod-
els. Many successful implementations have been reported:
frame-based [4, 5] as well as segment-based [6, 7], and con-
nectionist {5, 6] as well as non-connectionist [4, 7]. A po-
tential difficulty with context-dependent (phone) models is
the reduced amount of data available to train them. There-
fore, many systems perform an interpolation between mod-
els trained at different levels of context specificity. In or-
der to simplify this interpolation, the context-dependent
and independent models usually are of the same type (all
segment-based or all frame-based, and all connectionist or
all non-connectionist) and use the same observation vectors.

Since the different model-types have specific advantages
and drawbacks, it is appealing to combine them in a way
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that the various advantages are retained as much as pos-
sible, whereas most of the drawbacks are eliminated. In
this way, specialized models, with dedicated acoustic fea-
ture vectors, could be used at the various levels of context-
specificity. We already proposed [1] a framework in which
segment-based context-independent phone models are com-
bined with variable frame rate-based transition models.

It has been argued in many papers [1, 6, 7, 8, 9, 10] that
a segment-based approach could offer definite advantages
over the frame-based approach. In particular, we mention
the flexibility of introducing segment-related prior knowl-
edge about speech, and the capability of capturing the spec-
tral/temporal relationships over the whole phone.

However, the context-independent phone models are not
able to deal satisfactorily with coarticulation phenomena. A
possible solution would be to introduce context-dependent
segment-based phone models. However, the segment-based
approach exhibits some practical difficulties:

1. The classification models assume a given segmenta-
tion. Since it is impossible to determine the correct
segmentation before classification, a large number of
reasonable segmentations have to be considered dur-
ing the dynamic search. While this remains feasible
with a limited number of context-independent phone
models, it becomes computationally expensive when
a large number of context-dependent models have to
be investigated in those hypothesized segments.

2. The observation vectors observed in a segment have
to be warped to a fixed length vector that can be
analyzed by the classification models. This warping
‘may delete or obscure relevant information.

In order to avoid these difficulties, we decided to adopt an-
other approach. We designed phone transition models that
examine the spectral transitions in a confined region sur-
rounding a potential boundary between two phones. These
models are supplied with dedicated observation features
that capture the typical dynamics in the spectral balance,
the energy and the voicing evidence in those regions. In
[1], we used non-connectionist transition models: difference
measures between the actual acoustical observations and a
‘template’ that is typical for the hypothesized phone-pair.
In this paper, we introduce connectionist transition models.

The scores of the segment-based context-independent
phone models and the transition model scores are provided
as inputs to an additional ANN, called the Transition Con-
trolled Neural Network (TCNN). This TCNN transforms
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these scores into probability estimates that are suited for
a variable frame rate dynamic search [11]. Thus the inter-
polation between the transition models and the more gen-
eral and better trained phone models is performed using a
discriminant procedure, instead of a likelihood maximizing
procedure such as deleted interpolation [{12].

There exist other approaches in the literature which ex-
plicitly model the phonetic transitions [7, 8]. These ap-
proaches use a joint-Gaussian distribution to model the er-
ror between the observations and a ‘track’ or ‘template’
that is typical for the transition. There are three major
differences between these approaches and ours:

1. We use connectionist transition models, in addition
to ‘template’ or ‘track’ models.

2. The transition models in [8] examine regions which
are related to the hypothesized phonetic segments.
The transition models in [7] examine a fixed num-
ber of frames around the boundary. In our transition
models too, part of the observation features describe
a fixed number of frames around the boundary, and
are thus unwarped. Other features describe variable
length segments, emerging from an initial segmenta-
tion (see next section).

3. The dynamic search in our approach is the efficient
variable frame rate search, instead of the much more
computationally expensive stochastic segment search.

2. CONTEXT-INDEPENDENT PHONETIC
RECOGNITION

The context-independent phone models were provided by
the phonetic module of the segment-based phone recogni-
tion system described in [10]. This system incorporates an
auditory model front-end, an initial segmentation stage and
a phonetic classification and segmentation module. The au-
ditory model generates a sequence o of N; observation vec-
tors each characterizing a 10 ms speech frame. The initial
segmentation module retains a set b of N, < Ny + 1 can-
didate phonetic segment boundaries. A phonetic segment
boundary is defined as a boundary between the acoustic re-
alizations of subsequent phones. The segments of speech
enclosed by two consecutive candidate phonetic boundaries
are called ‘initial segments’. Candidate phonetic segments
are built by concatenating up to four consecutive initial seg-
ments, and a Multi Layer Perceptron (MLP) is trained to
estimate the posterior probability that a candidate phonetic
segment is really phonetic. Other MLP’s are trained to es-
timate the posterior probabilities of particular phones u;
(7 = 1..K) being realized in those phonetic segments. The
inputs of these MLP’s are derived from the observation vec-
torsin the segment and its close surroundings. They include
segmental features such as the duration of the segment.

The Dynamic Programming (DP) search examines sev-
eral candidate phonetic segmentations 3 and phone se-
quences u of the same length as 5, and calls the MLP’s
to determine the probabilities of these phonetic decodings
(3,u), given the acoustic evidence.
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Figure 1: TCNN-structure.

3. THE TRANSITION APPROACH

In our transition approach, the acoustic continuum of
speech is described as a sequence of transitions between
consecutive phones. If those transitions are assumed to oc-
cur on the boundaries in b, the phonetic decoding task can
be described as one of finding a sequence f of N transitions
between phone-pairs, and 3 and %@ can be derived from %.
The transition models should estimate the probability of
observing a transition t., to a particular phone u; in the
vicinity of the boundary b; being analyzed, given that ui—
was estimated at the previous boundary b;_;, and given the
acoustic observations. Obviously, as one must be able to
deal with inserted (phone internal) candidate boundaries,
transitions between two identical phones (in fact parts of a
phone) have to be investigated as well (i.e. u;—; =w;). This
is a direct consequence of using a variable frame rate-based
search, instead of a segment-based search.

In [1], we introduced consecutive approximations in the
probabilistic framework, in order to reduce the amount of
free parameters that have to be estimated from the training
corpus. This reduction is necessary in order to assure the
trainability of the nets. In this paper, we will only discuss
the TCNN framework and structure; the interested reader
can find more details in [1].

3.1. The TCNN approach

We factorized and approximated the posterior probability
P(%3,b) of %, given the acoustical observations and the ini-
tial segmentation as follows [1}:

Ny

H P(tu, lui—1, 51(0, b ui—1, ur), By (wi—1), 5y (i) (1)

L=

In this expression, p;(u;) represents context-independent
posterior probabilities of the phone u; in some candidate
phonetic segments in the vicinity of b;, and :(3, b; ui—1, u1)
represents the scores of the various transition models, in-
dicating the correspondence (or difference) between the ac-
tual acoustical observations and those which are typical for
the investigated transition. These transition models will
be discussed in the following section. The probabilities in
equation (1) are estimated by the MLP depicted in figure
1. This MLP, called the ‘Transition Controlled Neural Net-
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work’, has only one output node, and estimates the pos-
terior probability of the hypothesized transition. By using
the TCNN in a hypothesis testing scheme, we only need to
provide phone probabilities for the two phones of the dyad
being investigated. In this way, the number of inputs is
restricted, but the TCNN must be called at each poten-
tial boundary as many times as there are transitions to ex-
amine. By examining only those transitions corresponding
with the u;—;’'s of the most promising paths to & (b not
included), and with the u;’s receiving sufficient evidence
from the context-independent module, the computational
load is reduced, whereas the recognition performance is not
affected.

Note that the proposed TCNN contains no nodes which
are phone-pair specific, nor is the identity of the hypothe-
sized dyad specified to the TCNN. Consequently, the TCNN
itself is not able to learn the prior transition probabilities
from the training set. In fact, all features constructed by
the TCNN are shared by all dyads and everything that
is really phone-pair specific has to be captured in the
TCNN inputs. This explains why the phone probabilities
P,(u1—1) and p,(u), as well as the transition models scores
%1(5, b wi—1, w1) are given as TCNN inputs: they all give an
indication of the correctness of the hypothesis.

3.2. Transition models
3.2.1. Difference Measures

In [1], we used extremely simple transition models : dif-
ference measures quantifying the differences between the
actual acoustical observations (g, b) observed in the vicinity
of b;, and those which are typical for (wi—1,u:). In order
to limit the number of free parameters, the statistical dis-
tribution of a feature zm(9,bd) for a particular phone-pair
(wi—1,u1) is characterized by the maximum likelihood esti-
mates of its mean pm(ui—1,%) and its standard deviation
m(ui—1,%). The corresponding difference measure which
serves as an input to the TCNN is then given by:

I“’M(Ev E) — #m(m_1,u1)|
om(ui—1,u1) @)

Vim (0, b; uioy, w) =

No prior assumptions (such as a particular parametric form,
e.g. multivariate Gaussian) about the statistical distribu-
tions of the features are made, except that they are expected
to be more or less symmetrical around their means. It is left
to the Error Backpropagation (EBP) training of the TCNN
to decide on how to combine the context-independent prob-
abilities and the context-dependent difference measures.
Although this TCNN with Difference Measures as in-
puts (DM-TCNN) yielded a significant improvement over
the context-independent system [1], the rather primitive
way of characterizing the feature-distributions, and the fact
that the TCNN is not able to learn the prior transition
probabilities do put an upper limit on the attainable perfor-
mance. A better description of the template could be made
by estimating the full covariance matrix. But as we have un-
sufficient data to estimate this large number of free parame-
ters, we would have to cluster several transition models or to
make some independency assumptions. Instead, we imple-
mented a totally different kind of transition models: MLP’s
with different degrees of context-specificity were trained to
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Figure 2: Structure of the connectionist transition models.
The ci%, inputs specify the identity of u;_;.

estimate the posterior probabilities P(ty,|ci~1,5,b) of the
transitions, with ¢;—; specifying the identity of u;_; to some
degree. These probabilities are then supplied to the TCNN
in addition to the context-independent phone probabilities
and the former difference measures. In the following sec-
tion, we will describe the implementation of these connec-
tionist transition models.

3.2.2. Connectionist Transition Models

Currently, we implemented two connectionist transition
models: one that is conditioned on the preceding phone
(i.e. ci—1 = w1, ‘biphone type’), and one that is condi-
tioned on the Broad Phonetic Class (BPC : front vowel, cen-
ter vowel, back vowel, sonorant, unvoiced fricative, voiced
fricative, stop and silence) of that phone (i.e. ¢;—;y = BPC
of u;_y, ‘generalized biphone type’). This way, a signifi-
cant sharing of training examples is accomplished. Since
we have insufficient data to train a MLP for every phone-
pair, the biphone type transition model is implemented as
a single MLP having an output for every right phone and
having the identity of the left-context explicitly supplied
at its inputs by a one-of-n encoding (figure 2). This way,
the weights of the connections between the inputs and the
hidden layer are shared among all the phone-pairs, and the
weights of the connections from the hidden layer to a partic-
ular output-node are shared among all phone-pairs with the
same right-phone. This network can learn the prior tran-
sition probabilities from the training set, since it is able
to capture the correlations between the one-of-n input pat-
terns (left-phone) and the desired output patterns (right-
phone). Similarly, the generalized biphone type transition
model is implemented as another MLP, with a one-of-n en-
coding of the left-BPC. Obviously, both MLP’s are sup-
plied with the usual inputs describing the acoustical obser-
vations in the neighborhood of the investigated boundary.
Such network structures are less sensitive to the problem
of sparse data, since they can interpolate between context-
dependent and independent models [6].

4. CORPUS AND TRAINING

The training corpus consisted of 780 phonetically balanced
Dutch sentences (25 minutes of continuous speech) orig-
inating from 60 speakers. The training of the context-
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independent module is described in [10]. The training ut-
terances were automatically aligned to their phonetic tran-
scriptions, and the means and the variances characteristic
for the dyads were computed from these alignments. For
every candidate phonetic boundary b;, input vectors for the
connectionist transition models were stored in a training
database, accompanied by two labels indicating the iden-
tity of the phone to the left and to the right of the bound-
ary. Both networks were trained on these databases using
the EBP algorithm. In a second alignment, the inputs of
the TCNN (including the outputs of the two connection-
ist transition models) were stored in a training database.
The training is completed by training the TCNN on this
database, again using the EBP algorithm.

5. EXPERIMENTAL RESULTS

A separate test set of 130 sentences from 10 new speak-
ers was hand-segmented and labeled for evaluation. Both
the training and the test set were recorded in a noise
free room. The TCNN-based system was evaluated on
a speaker-independent phone recognition task, and com-
pared with the stochastic segment MLP/DP hybrid which
also provided the context-independent phone probabilities.
The results obtained on the test set are displayed in table
1. Phone recognition results are shown for the context-
independent baseline system, the DM-TCNN, and the new
TCNN. This new TCNN implicitly uses a bigram grammar,
through the posterior probability estimate of the biphone
type connectionist transition model. The TCNN-based sys-
tem realizes an improvement over the baseline system which
is 95% significant.

If only the output of the biphone type connectionist
transition model is used in the variable frame rate search
(instead of the TCNN-output), the total error is 47.2%.
Similarly, if only the generalized biphone type connection-
ist transition model is used, the total error is 48.7%. If the
TCNN is only supplied with the context-independent phone
probabilities, the total error is 44.3%, which is worse than
the segment-based context-independent system. We con-
Jecture that this performance loss is due to the less optimal
variable frame rate search. When only the transition scores
are supplied to the TCNN, the total error is 40.9%. The
best performance is obtained when the TCNN combines the
scores off all models.

Baseline system DM-TCNN | TCNN
Unigram | Bigram Unigram Bigram
D 11.4% 11.4% 10.0% 10.7%
I 4.8% 4.1% 6.1% 4.3%
S 25.2% 24.4% 25.0% 22.3%
T | 41.4% 39.9% 41.1% 37.3%

Table 1: Phone Recognition Results : D = deletions, I =
insertions, S = substitutions, T = total error.

6. CONCLUSION

The TCNN-based system proposed in this paper signifi-
cantly outperforms a context-independent system. This in-
dicates that transition models can effectively capture coar-
ticulation phenomena in speech and that the TCNN can in-
terpolate the context-dependent transition evidences with
the context-independent segment-based phone evidences in
an appropriate way.
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