ASSOCIATIVE APPROACH TO REAL TIME COLOR, MOTION AND STEREO VISION

Avidan Akerib and Rutie Adar
A.S.P. Solutions Ltd.
Robomatix Headquarters,
Hataasiya St., P.O.B. 2092, Industrial Zone,
Raanana 43100, Israel

ABSTRACT

This article presents a new methodology, based on the
Associative Signal Processing (A.S.P) approach to real
time parallel image processing. The architecture is fully
programmable and can be programmed to implement a
wide range of color image processing, computer vision
and multi-media algorithms at much faster than video
rate. The approach is based on an array of thousands of
processors, each is nothing but an "intelligent" memory
word that can identify itself to a value and change its
content accordingly. Benchmark results show that when
assigning an "intelligent” word (processor) to each pixel
in the image, computational power of several hundred
billion instructions per second is obtained. A chip based
on this approach was developed by A.S.P Solutions Ltd.
The chip called XITUM™ includes 1024 processors,
each with 72 "intelligent" bits, has computational power
of 1 BIPS and cloud identifies at a rate of 20 billion
patterns per second. A commercial chip with 2 BIPS
performance - The XIUM™-I , is now on the final
stage of development.

INTRODUCTION

Real time vision involves interpretation of a changing
scene that must be updated as video frames arrive at a
rate of 30 per second. Each video frame contains an
average of half million pixels. The amount of data for
each pixel may vary from 8 bits (monocular
monochrome image) to 32 bits, for tasks dealing with
stereo color images, or 32 bit color separations
algorithms for high dense color printers.

Carrying out vision tasks while keeping up with the
input scan rates, requires enormous computation power.
Rosenfeld and Weems[1] estimated it at 100 billion
instructions per second, plus or minus two orders of
magnitude. Although there are many vision tasks that
do not require such frequent updating, a very high
computation rate is still required. Within the last
decade many architectures have been developed , in
system level (Connection Machine[2]) or in chip level
(The Multi-Media Vision Processor- MVP[3]). All are
based on parallelism of serial computers (or DSPs) i.e.
increasing performance by partitioning the memory to
blocks and assigning each block to a different processors
or DSP. The major disadvantage of this approach is the
price and power consumption. Hence, specific
applicationsare still not commercially to be developed
by general purpose components.

3291

In the following, there is a presentation of breakthrough
technology, developed by A.S.P. Solutions Ltd. The
technology is based on the associative solution that
meets the above requirements with low power
consumption and low price. The A.S.P. architecture
carries out any vision algorithm at faster than video rate,
providing for the first time economy solution for special
purpose applications with general purpose architecture.

WHAT IS ASSOCIATIVE PROCESSING?

The Classical approach to associative processing, as
described by Foster[4], uses a few primitives to
implement all arithmetic and logic operations. These
functions operate on all bits of all words of associative
memory at the same time. Akerib & Ruhman{3] adapted
this approach to computer vision and proposed a system
designated ARTVM- Associative Real Time Vision
Machine.

To understand the associative approach, let us assume
that pupils are sitting randomly in a classroom. The
teacher wants to change the seating arrangements so that
the tall pupils are sitting at the back and the short pupils
are sitting in the front rows. Using the classical serial
method, the teacher would have to turn to each
individual pupil and ask him/her to change their place,
if necessary. Using the associative method, the teacher
asks all the pupils at the same time the following
question:

"Who has difficulty seeing?"

After the appropriate pupils raise their hand, the teacher
will give the following instruction:

“All the pupils who have raised their hands should
change places with those pupils who are sitting in front
of them"

Once they have changed places the teacher will again
ask the question and give the same instructions over and
over again until no hands are raised.

This example shows that the problem was solved
through a sequence of questions and answers. Repeating
this process until the convergence condition is satisfied,
is the basis for associative processing. The time
complexity is not dependent on the amount of data. (The
student in the class). On the other hand it depends on
some physical measure that is specific to the required
results. The complexity of the above example is the
distance between the taller and the shorter student.

0-7803-2431-5/95 $4.00 © 1995 IEEE

A deeper understanding of the associative approach is
given by the following example:

Suppose an image size of 512 X 512 pixels, each of 8
bit lengths, is stored in the memory. The required
operation is to find in 32 bit precision the exponent of
each pixel (¢P where p is 8 bit pixel value). In order to
implement the task with a serial computer, the CPU has
to read every pixel, execute the operation (through a
table-look-up or mathematical co-processor) and then
write the results into a 32 bit frame buffer. This
processes takes at least 262,144 machine cycles

The ASP (Associative Signal Processing) approach
solves the problem in a different way. If the pixels will
be stored in an "intelligent" memory that can identify
itself, then a control unit (a teacher) will carry out a
sequence of questions and answers (without accessing
the memory) as follows:

FOR I=0 TO 255
all the pixels with a gray level value of 1
have to raise a flag
all the pixels which raise a flag will be
changed to OUTPUT[I]
END

It is easy to see from this example, that the computation
time is not dependent on the amount of pixels. In any
case 256 questions are asked and 256 answers are given.
The questions and answers are carried out
simultaneously to all pixels. Hence the problem was
solved by 512 machine cycles (instead of 262,144). If
we assume a clock rate of 20 MHz, the above algorithm
will be accomplished in 25 micro seconds for all the
512 X 512 pixels. Hence the algorithm executes at a
rate of 10 billion floating point operations per second .It

should be noted that every question or answer to the -

"intelligent” memory occurs concurrently and takes only
one machine cycle. This is the major property of
associative processing, enabling it to implement any
parallel truth table that is the building block for all the
arithmetic and logic operations.

THE XITUM™ CHIP ARCHITECTURE

Referring to Figure 1, the core of the XTUM™ chip is an
array of "intelligent” (associative) cells, with 1024
words, each of 72 bits, that are parallel by bit as well as
by word. The main command is compare. The CW
(Comparand/Write) register is matched against all
words of memory simultaneously and agreement is
indicated by setting the corresponding ZTag bit. The
write command operates in a similar manner. The
contents of the CW are simultaneously written into all
words indicated by the Tag. The read command is
normally used to bring out a single word, the one
pointed to by the Tag.

It is easy to see that the compare and write commands
are of the type:

IF condition THEN action,

3292

that is well suited for parallel truth table
implementation. This property facilitates all logical and
arithmetic functions to all the 1024 words in parallel.
Hence the XTUM™ chip may be regarded as an array of
1024 simple processors, one for each word in the
"intelligent” memory.

Communication between processors is carried out a bit
at a time via the Tag register by means of the
ShiftUp(n) ShiftDown(n) commands. The number of
shifts (n) applied determines the distance or relation
between source and destination. When this relation is
uniform, communication between all processors is
simultaneous. Fortunately, most vision algorithms,
including operations over a neighborhood, only require a
uniform communication pattern.

Bringing digital data in to or out of the processors, is
available through the FIFO, which consists of a 24-bit
shift register attached to each word. A color image (24
bits) or stereo image (16 bits) can be shifted into the
FIFO as it is received and digitized, without interfering
with associative processing. When the FIFO is full or
when there is an interrupt (such as vertical blanking),
the frame is transferred into the processors, a bit slice at
a time, (48 cycles) via the Tag register. During the next
frame time, both input and output proceed in paraliel
with processing without interference.

Command and
Status
{32 bits)

Communication

Digital Data Bus Up (16 bits)

Input (24 bits)

@ o

72N
i
L

Communication
Bus Down (16 bits)

Digital Data
output (24 bits)

Fig. 1. XIUM™ block diagram

THE B.L.AS.T.™ ARCHITECTURE

The B.L.AS.T.™ (Bit Logic Associative Technology) is
a single board PCI Bus compatible (under development).
The board includes 8 XTUM™-II chips for varies
standard video compression (full CODEC) applications.
Since the board is fully programmable, it could be also
used for wide range of real time image processing
applications that require a massive amount of
operations. (up to 16 BIPS), such as color inspection, 3D
measurement, virtual reality, motion detection, 3D
graphics, high resolution animation, automatic morphing
and desk top publishing accelerator. The B.L.AS.T.™
is divided into three parts: a) the video unit, b) the
processing unit and c) the controller unit. The video
unit is to include a triple video digitizer, and a triple
video display (24 bit) used for digitizing or displaying
real time color TV images (PAL/NTSC). At the input
section there will be a MUX to select the type of image
to be accepted - PAL/NTSC or to direct 24 bit digital
image. The memory storage used to store a high
resolution, full frame, 24 bits. The processing unit will
include 8 XTUM™-II chips. Since every chip includes
1024 processors, it makes available to process 8K
pixels in parallel. The pixels to be processed are
selected from the frame buffer through a programmable
region of interest selector. The frame storage has two
inputs and two outputs. One input to accept a new image
from the camera and the second to accept the results
from the processing unit. One output goes to

the display monitor while the second output goes to the
processing unit. All inputs and outputs can be located at
different regions in the frame storage. The controller
unit will include a program memory to store all the
associative commands (questions and answers) and a
micro controller to manage the program memory and to
communicate with the host (PC) computer.

ARITHMETIC IMPLEMENTATION

Referring to Fig. 2, suppose that the XIUM™
“intelligent" cells (1024 words each of 72 bits) contain
two data vectors, A and B, each 1024 numbers long and
with a precision of M bits. We wish to replace the
vector field B by the sum A + B. The ASP operations
are carried out sequentially, a bit slice at a time, starting
with the least significant bit. In each step, the three
slices A;, Bj and Cy, (i=0,1,...,M-1, and C, is the carry
slice) are asked in parallel for an input combination of
the applicable truth table and is followed by a parallel
replacement of B and C with an output combination.
The addition takes only 8M machine cycles for all the
data It follows that for a machine cycle of 50
nanoseconds (clock frequency of 20 MHz) an 8-bit
addition in the XTUM™ will takes 3.2 microsecond or
3.2 nanosecond per word. The ASP architecture is
flexible such that a 4-bit addition will take only 1.6 ns.
per word, and an increment of 1 will take only 0.4 ns.
per word.

3293

Cy B A

Fig. 2. Vector addition

Associative subtraction operates on the same principle
and also takes 8M cycles. It is easy to extend addition to
multiglication (5.25M2+M cycles) and division
(1TM“+13M+1 cycles).

High level implementation ("C"
associative vector addition, is very simple.
statement looks like this:

language) for
The

VECTOR A(0,8), B(8,8), C(16,32), F(60,1);
C=A+B;
F=A==B; /* mark in F all pixels which

have the same value in A and B */
C = A+ShiftUp(B,1); /* VectorBis

shifted up 1 position and added to A*/
F=A>128; /* thresholding (all values

above 128 are marked in F) */

A+=5; /* add a constant to a vector */
B++; /* increment a vector */
C+=A*B; /* multiply accumulate */

The declaration vector (using class in C++) lets the
compiler perform the operation "+" on vectors. When
the compiler recognizes the expression "+", it calls the
ASP associative addition function, to execute this
operation associatively. The first parameter of the vector
is the bit starting position in the associative processor
within the 72 bits, while the second parameter is the
precision. In this case the vector A starts in bit position
A with a precision of 8. The vector length is determined
by the number of processors in the chip. For example,
in one XTUM™ chip the length is 1024, and in the
B.L.AS.T.™ computer, the length is 8K. The execution
time remains the same in all cases. Using the same
principle, the programmer can use all the expressions
and statements of regular "C" language.

VISION ALGORITHMS

The flexibility and speed of the XIUM™ and
B.L.AS.T.™ allow the implementation of a broad range
of vision functions in real-time. They include low level
algorithms such as histogram generation, color
convolution, edge detection, thinning, stereo matching
and motion estimation. Mid-level functions can also be
implemented, including morphological ~operations,
contour tracing and labeling, Hough transforms, saliency
mapping, and such geometric tasks as the convex hull
and Voronoi diagram. The ASP simulator was used to
test the associative algorithms and to verify their
complexity. The tested was for a Single XIUM™-II

chip. Since the associative architecture is scalable, the
performance for B.L.AS.T.™ board (8 chips) will be
exactly 8 times better. 5X5 convolution takes 45
ns./pixel., (about 15ms. for full screen) Edge detection
is executed in 35 ns./pixel, Likewise, computation of
stereo disparity by the Grimson[6] method over a range
of +15 pixels, including disambiguation and out-of-
range test, is completed in 230 ns./pixel. This stereo
performance was only attained by virtue of an array
algorithm for counting labeled pixels over a
neighborhood. Motion estimation for S.LF. resolution
and searching region of 16 27 pixels takes 30 ms.
Curve propagation, thinning and contour tracing take 4
ns./pixel per iteration. The linear Hough transform takes
50 ns./pixel for a resolution of 16 in direction and
distance from the origin. DCT and Quantization takes
14 micro second per 8X8 block.

PERFORMANCE EVALUATION

Two methods were selected for comparative evaluation
of the B.LLAS.T.™ performance. In the first method we
compared our architecture to an SIMD array of up to 256
high performance processors (Inmos T800/Intel 860),
and found the B.L.AS.T.™ to have a speed advantage
of 4.5 orders of magnitude. The speed advantage was
lowest for neighborhood arithmetic operations of higher
precision, such as convolution (factor of 97), and
reached a peak for neighborhood logic operations such
as curve propagation (factor of 2500). The second
method was the Abingdon cross benchmark for which
test results were available on several of the better
known vision architectures. The B.L.AS.T.™ was found
to lead by 3.8 orders of magnitude in price-performance.

REFERENCES

[1] C. Weems, E. Riseman, A. Hanson, A. Rosenfeld,
*IU Parallel Processing Benchmark", Proc. Comp.
Vision &Pattern Recogn.pp 673-688, 1988.

[2] W.D. Hillis, "The Connection Machine", MIT
Press, 1985.

[3] Texas Instruments, "Multimedia Video Processor
MVP", Technical Brief, 1994.

[4] C. C. Foster, "Content Addressable Parallel
Processors®, Van Nostrand Reinhold

Co., 1976,chs. 2 & 5.

[5] A.J. Akerib, S. Ruhman, S. Ullman, "Real Time
Associative Vision Machine”, Artificial Intelligence and
Computer Vision, Y.A. Feldman and A. Bruckstein ,
Elsevier Science Publishers B.V. 1991.

[6] W.E.L. Grimson, "4 Computer Implementation of a

Theory of Human Stereo Vision", Phil. Trans. Royal Soc. of

London, Vol. B 292, pp 217-253, 1981.

3294

