A RISC CONTROLLED MOTION ESTIMATION
PROCESSOR FOR MPEG-2 AND HDTV ENCODING

D. Charlot!, J.-M. Bard!, B. Canfield®, C. Cuney!, A. Graf2, A. Pirson!, D. Teichner?, F. Yassa'!

IThomson Consumer Electronics Components, Meylan, France
2Thomson Consumer Electronics, VS-Villingen, Germany
3Thomson Consumer Electronics, Indianapolis, U.SA.

ABSTRACT

In this paper, we describe the architecture of a hierarchical
motion estimation processor, with respect to the MPEG-2
encoding standard. This processor can also be used in HDTV
applications. The motion estimation processing is in 2 steps:
first full-pixel then half-pixel. Several modes are possible,
depending on the image types (I, P or B - MPEG terminol-
ogy, frame based or field based). A decision is taken in this
processor to choose the best mode. The architecture is based
on a RISC controller, external DRAMs to store anchor
frames and specific hardware for processing the distortions.
The architecture was chosen to achieve high performance,
programmability and high memory bandwidth.

1. INTRODUCTION

In the new digital television world, an international standard-
ization launched by the ISO was decided and MPEG-2
standard has recently appeared. It defines some algorithms to
achieve high data compression and good picture quality.
Among them, the motion compensation is a powerful tool:
the encoder assumes that a 16*16 block of pixels (“macro-
block” in MPEG terminology) has been translated by a
motion vector, which is found using a “block matching”
technique. The motion vector is then encoded and sent to the
decoder.

A hierarchical approach is a good solution, using for exam-
ple a first step to find a coarse motion vector in a big search
window, and then to find a fine motion vector in a smaller
search window. The goal of this article is to give an example
of an algorithm to find the fine motion vector.

Due to the multiplicity of resolutions, bit rates or television
formats (interlaced or progressive), it is important to obtain
digital television representation techniques with maximum
interoperability. A number of search modes are then defined
and treated by the following algorithm.

2. HIERARCHICAL MOTION ESTIMATION
DESCRIPTION

3287

2.1. Global functionality

The algorithm needs 3 inputs for one given macro-block
(16*16 pixels in luma, 8*8 chroma U pixels, 8*8 chroma V
pixels) and for one given mode:

- the luma pixels of the given macro-block;

- the input vector for the mode, generated externally,
for example from a decimated picture;

- the search window pointed to by the previous vector,
whose size depends on the mode. The search window can
be from a forward anchor frame or from a backward
anchor frame.

The processor outputs will be then:

- the chosen mode (in luma)

- the luma vector(s) on half-pixel grid for this mode
The global processing algorithm is given on fig. 1.

Macro- e s

Block i
Macro-
Block j i ' '
Macro- [——
Block k —

writing anchor macro-blocks .

1 external DKAMs i
input luma mode output

fefgfgnce Y ‘“processmg ' reference

FIG. 1: Global Processing Algorithm
The macro-blocks are processed in pipe-line.

2.2, Hierarchical processing

* This work was completed while with TCEC (Thomson
Consumer Electronics Components). Currently joined
Motorola IC development Center.

0-7803-2431-5/95 $4.00 © 1995 IEEE

We describe here a processing for a given mode and for a

reference macro-block (compute means here calculate the

square error on each pixel and sum for the whole macro-
block):

1. First get from the needed anchor (forward or back-
ward) the search window, which may be reduced due to
edge effects, knowing the input vector

2. Compute the distortions of the reference macro-
block on the whole search window to find the best candi-
date (smallest distortion) in full-pixel.

3. Compute the distortions for the 8 half-pixel candi-
dates which are around the best full-pixel candidate, get-
ting rid of those which are outside the current search
window. :

4. Output the smallest distortion (which can be on
half-pixel grid or full-pixel grid) and the corresponding
vector on half-pixel grid, relative to the first pixel of the
search window,

At the end of this process, we know what the distortion is for

the given mode, and what the relative half-pixel vector is.

Knowing the input vector, the size of the search window and

the relative vector, we know the absolute half-pixel grid vec-

tor for this mode.

2.3. Motion estimation modes

Several modes to estimate the best candidate for a macro-
block are possible in the processor, depending on the picture
type, on the user who can program the number of modes to
limit the process timing, and also on the edge effects which
can forbid some modes.

The distortions can either be calculated on 16*16 pixels
(frame luma macro-block, see Fig. 2) or on 16*8 pixels (field
luma macro-block, see Fig. 3).

2.3.1. 16*16 pixel modes

MVO0 mode: only one distortion computed, with an
input vector equal to zero, on forward anchor frame and
also on backward anchor frame (for bidirectional pic-
tures).

. Frame mode: a search window is defined, pointed to
by an input vector, in which the best candidate 16*16 is
searched, in a forward or backward frame.

Interpolated frame mode: in bidirectional picture, the
best forward frame candidate and the best backward frame
candidate are averaged to give one candidate 16*16. In
that case, the result will be one distortion but two half-
pixel vectors (one forward and one backward).

2.3.2. 16*8 pixel modes

The macro-block is divided in two sub-macro blocks - a and
b, taking respectively even lines or odd lines, especially used

forward anchor backward anchor

3| 16*16

reiren

ce
%
MB \ZH
i
ol

&
9
forward search
window
backward search
window

FIG. 2: Frame mode

in interlaced video. The following modes are processed on
the sub-macro-blocks:

Field modes: a search window is defined, pointed to
by an input vector, in which the best candidate 16*8 is
searched, in a forward or backward a-field (even lines) or
b-field frame (odd lines). One best candidate is kept from
the a sub-macro-block, and one from the b sub-macro-
block. The two corresponding distortions are added to be
compared with frame modes. Two half-pixel vectors will
be output if selected..

b-field anchor
T~ faa in
forward aa ‘l Ut ye
search windo forw. b Qr | a-field
s. window eferende
MB
16%8
f 74 12
orward ab (T €ec. b-field
search Win.__fpH inp. ve—éc' < SETerencs
MB
forw. ba 16*8
ch w.
a-field anchor ‘

Same features for backward searches

FIG. 3: Field mode

Interpolated field mode: in bidirectional picture, the
best forward a-field candidate and the best backward a-
field candidate are averaged to give one candidate 16*8.
One distortion is calculated with the a-sub-macro-block.

3288

The same process on the b parts, a second distortion is
then calculated.

Dual-prime mode [1]: In interlaced video, field candi-
date vectors are averaged with small search windows of
the opposite field. Resulting distortions are composed to
each other to find the best match.

2.3.3. Mode selection

To select the best mode, the mode with the best distortion is
preferred.

3. ARCHITECTURE DESCRIPTION

On the processing part, we can distinguish the anchor data
block, the reference block and the luma mode processing
block (see Fig. 4). On the controlling part, we have the
MMU (Memory Management Unit) and the RISC on-chip
controller.

3.1. Main blocks
DRAM
data yuv_out yuv_ref
b
yuv_ t—3! anchor reference
anch data block
-t
DRAM LUMA MODE
ctrl MMU v
PROCESSOR
commands distortions
;—l relative yectors
input [Senal
vectors llte;rr@—; RISC-Controller

output vectors
& mode

FIG. 4: Architecture of the motion
estimation processor

3.1.1. Anchor data

This block is used to store the input data which are to be
written in the external dram, that will be used as anchor
frame for future macro-blocks. The pixel inputs (yuv_anch)
are received serially and output 8 pixels at a time. Luma and
chroma are treated here.

3.1.2. Reference block

This block is used to store the input macro-block which will
be used as reference macro-block to be processed. The pixel
inputs are received serially (yuv_ref). The luma output is 8
pixel wide to the block matching arrays (These 8 pixels are
vertical, chosen among the 16 pixels depending on the mode,
frame, a-field or b-field). The luma pixels and the chroma
pixels are also output serially (yuv_out), at the same time as
the half-pixel vectorsand the chosen mode.

ond BMA computes the search window delayed of one pixel.
So after 17 cycles in field mode, 34 in frame mode, 2 distor-
tions are available. Then the mincell selects the best one, and
keeps the minimum for the full pixel search in the whole
search window.

3.1.3. Luma Mode Processor

This block will calculate the distortions, depending on a
search mode. The search windows, whose size is a parame-
ter, are read from the external DRAM and the reference
macro-block is read from the reference block. The process is
done in full-pixel first then on half-pixel grid.

The outputs are then a relative half-pixel grid vector in the
search window and the calculated distortions.

3.14. Serial interfaces

The inputﬂ vectors are written bit-serially and read in parallel.
The output half-pixel vectors and the chosen mode code are
written in parallel and output bit-serially.

3.2. RISC controller

The functionality of this processor depends on many param-
eters (picture size, picture type, HDTV or not, search win-
dow size, mode choosing algorithm,...). A solution for the
architecture is to have a programmable controller. A RISC is
chosen for its simplicity. A RAM is also used for a part of
the program, which is down-loaded at the initialization.

The RISC on-chip-controller has to manage the global
sequencing of the process and to ensure a correct processing
whatever the parameters are.,

3.3. MMU synchronizer

The RISC does not drive directly the other blocks. The com-
mands are given to the MMU (Memory Management Unit)
at the same time as the external DRAM address and burst
length. The MMU will give these commands to the chosen
blocks only when the DRAM exchange starts. This enables
an automatic synchronisation between commands and data.

4. CONCLUSION

The chosen architecture matches the main requirements:
- high memory bandwidth

3289

- high flexibility.
ACKNOWLEDGMENTS

We want to acknowledge all those who facilitated the
achievement of this work.

REFERENCES

[1] Preliminary Working Draft of MPEG-2/System, ISO/IEC
JTC1/SC29/WG11 MPEG92, 6 Nov. 1992,

[2] Special issue on VLSI implementation for digital image

and video processing applications, IEEE Transactions on cir-
cuits and Systems, Oct. 1989.

3290

