A PROGRAMMABLE MOTION ESTIMATION PROCESSOR
FOR FULL SEARCH BLOCK MATCHING

Alain Pirson!, Fathy Yassa!”, Philippe Paul', Barth Canfield?,
Friedrich Rominger’, Andreas Graf3, Detlef Teichner’

1Thomson Consumer Electronics Components, Meylan, France
2Thomson Consumer Electronics, Indianapolis, USA
3Thomson Consumer Electronics, VS-Villingen, Germany

ABSTRACT

This paper describes a programmable motion estimation
processor applying a block matching technique on large
search windows.

Developed in the context of an MPEG-2 video encoder, its
use can be extended to any application where fast motion
estimation is required. Its high performance (17 Gops peak)
and its ability to work in paraliel make it ideal for real time
applications like video compression.

The Block Matching Processor (BMP) consists of a CPU
associated with several specific units including a fast motion
estimator, a DRAM interface, IO ports and some on-chip
memory. This approach allies the flexibility of a CPU to the
efficiency of dedicated hardware. A DRAM controller mini-
mizes the impact of data transfer on the computing power.

1. INTRODUCTION

The growing need for handling digitized video sequences is
met using compression techniques. The high interest in such
techniques led the International Organization for Standardi-
zation (ISO) to define some standards. A very important one
is the recently emerged MPEG-2 standard which aims at pro-
viding high compression ratio while keeping good picture
quality [1].

MPEG-2 rests on an algorithm which puts together a group
of techniques specially adapted to video compression. It
implements among others a very efficient block-based
motion compensation algorithm which involves a rich set of
prediction modes (using field or frame data, past or future
pictures...). The compression ratio and the quality of the
decoded pictures depend on the quality of the prediction
which is tightly related the quality of the motion estimation.
On the other hand, real-time video processing requires high
performance systems.

* This work was completed while with TCEC (Thomson
Consumer Electronics Components). Currently joined
Motorola IC development Centre, Geneva, Switzerland.

3283

In conclusion, a motion estimation processor for MPEG-2
encoding must provide good quality estimation at high per-
formance. It must also be flexible to support various modes.
These general requirements can be applied to a wide number
of applications. They constitute the major characteristics of
the processor described in this paper.

2. IMPLEMENTED ALGORITHM

Among motion estimation techniques, block matching seems
to be one of the most appropriate methods. It is consistent
with the block-based approach of the MPEG-2 standard. It is
also one of the most suitable techniques for VLSI implemen-
tation which is a major concern for real-time video applica-
tions.

This technique consists in moving a source block around in a
search window. For each position, an error is calculated. The
best matching corresponds to the position leading to the
smallest error. The search strategy and the range determine
the quality of the estimation. Our requirements led us to con-
sider a full search strategy on large search windows, How-
ever, a simple calculation shows that the computing power is
excessively high for suitable ranges. That is why we decided
to adopt a hierarchical approach. It consists of a multi-level
motion estimation with refined search accuracy at each level.
At coarse levels, the block matching is applied on decimated
pictures. This approach reduces the amount of calculation
while maintaining the precision.

The motion estimation technique implemented in our proces-
sor is a 4x8, 8x8, 8x16, 16x16 pels block matching using a
regular full search strategy. The matchings are carried out on
a search area limited by a maximum range in both directions.
This range is programmable. The error function is a sum of
absolute errors (SAE) between matched pixels.

3. MOTION ESTIMATION HARDWARE

3.1. Block matching array

Systolic arrays seem to be ideal candidates for a VLSI imple-
mentation of block matching algorithms using regular search

0-7803-2431-5/95 $4.00 © 1995 IEEE

strategies. Different architectures have been proposed in the There is no predifined order to scan the stripes. However, it
literature. In our MPEG-2 encoder, the size of the source is advantageous to adopt a progressive order where each
block is fixed and small. This means the source block canbe new stripe corresponds to the previous one shifted one row
stored on-chip during the whole search process. This has a down. The data exchange can be significantly reduced by
strong impact on the architecture since the whole IO band- using on-chip line memories since only one row needs to be
width can be allocated to the search window input. It ledto updated between consecutive stripes.

the choice of the structure presented on figure 1.

............... 4
)

, source block stripe k

source block

SAESs: ...ex2 €1 €0

3 3 ﬂ_’% " figure 3: computation with the array

S 3 S R The structure presented on figure 1 allows two source
g blocks to be stored at the same time in the network, thanks
to a double buffering (figure 2.a). A control signal deter-
mines which block is actually used in the current computa-
0 A A A A [tion. This capability offers two advantages:

- Any search stripe present in local memories can be used
twice, once for each block. This feature reduces again the
bandwidth by a factor of 2.

figure 1: block matching array

This structure is derived from the systolic approach. It con-

tains two types of identical processing elements (S and A) _ 1y j5 possible to interlace two block matching operations at
spatially organized in a regular way. All the processing ele- ;1e) Jevel, by switching from one source block to the other
ments wgrk synchronously. }Elach S processing element is every cycle and loading alternatively the columns of the
loaded with a source block pixel. In fact, IO source bl_OCkS search stripes. This “interlaced” mode allows block match-
can be stored in this way. The search windows are input . qnerations with source blocks twice as big as the array.

stripe by stripe on the left side of the array. Each S process- por example, a 4x8 array can achieve 8x8 block maching.
ing element calculates the absolute error between an incom-

ing search pixel (a) and one of the source pixels (by or by) In normal mode, two registers are necessary between the A
stored locally (figure 2.2). The A cells are S-input adders ~ cells. A third register is required for the interlaced mode. In
used to sum the intermediate results. this mode, a final stage is also needed at the output of the
array to add together the contribution of the interlaced
matchings. This last stage (L) is shown in figure 2.b. It
incorporates a bypass for the normal mode.

3.2. Mincell

The SAEs produced by the array are forwarded to a block,
the mincell, in charge of finding the smallest SAE and its
related motion vector. It compares the consecutive SAEs
and keeps the minimum. In the case of equality, the vector
having the smallest magnitude is kept.

figure 2.a: S cell figure 2.b: L cell

The block matching array produces one result every cycle.
The consecutive SAEs (sum of absolute errors) correspond
to the motion resulting from a horizontal shift of the source The mincell needs the relative coordinates of the upper left
block one position to the right every cycle (figure 3). A corner of the search window as seed vector. This seed vector
number of stripes may be submitted to the array o cover the is loaded before starting a search process.

entire search window.

3284

4. BLOCK MATCHING PROCESSOR

Up to now, we have described the architecture of a block
matching unit. Let us go one step further and integrate this
unit into a block matching processor.

Our major requirement is computing power coupled to a
flexible control architecture. Having this in mind, we
decided to adopt a classical DSP approach based on a CPU
core with the following dedicated units associated to it:

- a block matching unit (BMU),

- a motion vector storage buffer (MV buffer),

- an 8-bit input port,

- a serial port to output motion vectors (output port),
- a micro-processor interface for control.

This architecture is shown on figure 4.

figure 4: BMP architecture

The dedicated units share a common bus connected to an
external memory. They all have some local storage available
(RAM or FIFO). The bus allocation is handled by a memory
manager (MM) under control of the CPU.

Each BMP can address a dynamic memory (DRAM). Page
mode is intensively used to maximize the bandwidth.

The consecutive pictures are loaded through the input ports
and stored in the DRAM. These pictures can be used as
source pictures (set of blocks to be matched) or as anchors
(search pictures).

The source blocks are processed by the BMU. For that pur-
pose, a group of them are fetched from the DRAM and
loaded in the BMU. After having written the seed vectors, a
search process is launched. It performs motion estimation

with anchor data read from the DRAM. When the search
process is completed, the computed vectors are stored in the
motion vector buffer to be sent to the DRAM, while the pro-
cedure is restarted with other source blocks.

The motion vectors will be output on the serial line when
requested. They are also accessible through the micro-proc-
essor interface.

4.1. On chip controller

The heart of the BMP is a RISC (Reduced Instruction Set
Computer) processor. This processor is a one-stage pipe-line

Harvard machine!, executing one instruction every clock
cycle. It contains a register file as well as a data memory.
The operative unit consists of an ALU associated with a bar-
rel shifter. Each instruction is fetched from one of two on-
chip program memories: a ROM and a RAM down-loaded
through the micro-processor interface.

The RISC processor controls all the specific units of the
BMP. It activates them by launching tasks and responds to
their requests (i.e. end of task, data ready...). For this pur-
pose, some special instructions were added to its instruction
set. The RISC processor is also in charge of computing the
parameters the specific units need, like address of data for
the memory manager, search range or seed coordinates for
the motion estimator...

4.2. Block matching unit

The block matching unit implements the above concepts as
follows (figure 5).

DRAM BUS

4 x 16 array

11

RAM
{ RAM
{RAM|
RAM |
RAM
RAM }
RAM }
RAM
RAM

4 x 16 array

[

4 x 16 array

L]

"Wy OHAN

4 x 16 array

figure 5: block matching unit

1. A Harvard machine is a processor with separated data
and program flows (they do not share the same bus
and the same memory)

3285

This architecture implements four 4x16 arrays. This organi-
zation is attractive because it supports all the target match-
ing sizes. Indeed, the global structure can be configured as:

- eight 4x8 arrays (4 cascades of two 4x8 arrays),

- four 8x8 arrays (2 cascades of two 8x8 arrays),

- two 8x16 arrays,

- two 8x16 arrays in interlaced mode to achieve two

16x16 block matchings!.

The four arrays are connected to 9 line memories through a
crossbar. The size of the memories determines the widest
search window which can be processed.

The crossbar connects the right memories to the arrays. In
mode 4xX, only 5 memories are used at the same time. Four
of them feed the network whilst the fifth one is loaded with
data from external memory. In mode 8xX the 9 memories
are used, 8 of them to feed the network. The 16x16 inter-
laced mode refers to the same organization as mode 8xX.
The search range is twice as small.

43. Input ports

The BMP implements an 8-bit input port used to load the
source and the anchor pictures. This port includes a decima-
tion device necessary for hierarchical motion estimation.
The data sent to the port are stored in a buffer and shifted to
the DRAM by the memory manager in fast burst mode.

4.4, Serial port

The BMP also includes a serial port used to output the com-
puted motion vectors. This port consists of a buffer con-
nected to a synchronous serial line.

4.5. UP interface

The BMP includes an 8-bit bidirectional micro-processor
interface which allows an external processor to control the
BMP. This interface enables the exchange of information
between the external processor and several units of the
BMP.

It permits the down-loading of the RISC program. It allows
the external processor to pass some parameters to the RISC
processor via some shared registers mapped in the interface.
The RISC processor can also send some information to the
external processor through a dedicated interface register.

1. The 16x16 mode is based on two 8x16 arrays using
interlaced mode and working in parallel because only
8 input buses are available. The performance is
halved. However, the global performance remains
unchanged since two 8x16 arrays are used in parallel.

5. CONCLUSION

The processor described in this paper attains the expected
performance of 17 Gops peak. Of course, the real perform-
ance is application dependent. It is related to the user’s abil-
ity to exploit the integrated hardware. For example, the need
to optimize the code is of capital importance.

REFERENCES

[1] Coding of moving pictures and associated audio,
MPEG-2/System, ISO/IEC JTC1/SC29/WG11.

[2] Special issue on VLSI implementations for digital image
and video processing applications, IEEE Transactions on
Circuits and Systems, Oct. 1989.

(3] R. Saint Girons at al., “MPEG++ a robust compression
and transport system for digital HDTV”, IEEE International
Symposium on Circuits and Systems, LA California, May
1992,

ACKNOWLEDGMENTS

We want to acknowledge F. Kazi (TCEC Meylan, France)
for his help in preparing this paper.

We also want to thank M. Henri (SGT Thomson Grenoble,
France) for his constructive criticism regarding the architec-
ture.

3286

