2-D DCT USING ON-LINE ARITHMETIC

Javier Bruguera

Department of Electronics
University of Santiago de Compostela
15706 Santiago de Compostela. SPAIN

bruguera@gaes.usc.es

ABSTRACT

We present a VLSI architecture for the evaluation of the
(8x8)-point 2-D DCT with on-line arithmetic. The uti-
lization of on-line arithmetic, in combination with an al-
gorithm based on FCT and matrix multiplication, reduces
the total hardware maintaining a data rate and a latency
similar to approaches based on distributed or parallel arith-
metic. The architecture has been integrated in a chip using
a 1y CMOS technology, occupying an area of 56.7mm?.

1. INTRODUCTION

The two dimensional Discrete Cosine Transform is consid-
ered an efficient technique for image compression and is
being utilized as standard in several applications, including
video compression, storing and transmission of still images
(JPEG) and moving pictures (MPEG) and HDTV.

Since direct implementation of the 2-D DCT of an Nz N
real matrix is computationally intensive, it is usually imple-
mented by means of the row—column decomposition tech-
nique (separated 2-D DCT), in which the N-point 1-D
DCT of each column of the input data matrix is computed,
and then followed by a N-point 1-D DCT of each row of
the resulting matrix. There are in the literature several im-
plementations which compute the 2-D DCT according to
this method using parallel arithmetic [8], serial arithmetic
[1] and distributed arithmetic [7] [9].

In this paper we present an VLSI architecture for the
computation of the separated (8x8)-point 2-D DCT with
on-line arithmetic [3]. We develop an on-line recurrence
for the 1-D DCT and then integrate it into the overall algo-
rithm. The architecture has been integrated in a chip using
a lum CMOS technology, occupying an area of 56.7mm?.
Although the on-line algorithm is digit serial, because it
operates with the most-significant digit first it achieves the
same latency as parallel and distributed-arithmetic imple-
mentations. The area of the on-line implementation is
smaller than the area of the parallel implementation, since
each multiplier is replaced by two 4-to-2 CSA adders and
one 5-bit CPA adder. On the other hand, implementations
with distributed arithmetic need a larger ROM area.

This work was supported in part by the Ministry of Educa-
tion and Science (CICYT) of Spain under contract TIC92-0942.
This work was performed while J. Bruguera was with University
of California at Irvine

3275

Tomas Lang

Department of Electrical and Computer Eng.

University of California at Irvine
Irvine. CA 92717. USA

tomas@ece.uci.edu

X(3), (2), x(1), X(0)
™\

-+ X(7), X(0)

1-DDCT
Figure 1: On-line 8x8 point 2-D DCT

2. ARCHITECTURE OF ON-LINE 2-D DCT

X(4), x(5), x(6), X(7)

The 8-point 1-D DCT of an input sequence {z(0),...,z(7)}
is defined as

7
1 . (21 4+ 1)m=
_1 WT MY Gy cm< T

y(m) 2u(m) ; z(1) cos 15 0<m<T (1)
being u(0) = 1/v/2 and u(m)=1if m # 0

To reduce the number of multiplications in the compu-

tation of each 1~-D DCT, two 4-point subsequences, {u(:)}
and {v(:)} with 0 < i < 3, are obtained as

u(i) z(t) + z(7 — 1)
v(i) = z(1)-z(7T—1) 2)
To achieve this the input sequence is ordered as {x(0), x(7),

.., x(3), x(4)}. Then, the transformed sequence is com-
puted as,

(i) =Y c(i,5)2(5)

3=0

0<i<7T (3)

being c(i,j) the elements of the matrix of cosine coefficients
and z(5) = u(j) when 1 = 0,2,4,6 and z(j) = v(j) when
i=1,35,17.

Figure 1 shows the block diagram of the on-line archi-
tecture for the computation of the 8x8 2-D DCT. The sub-
sequences u(1) and v(i) are represented in carry save (CS)
format, where the sum word is z(i) and the carry word is
z(7—1) or —~z(7 —i). To obtain —z(7 —) the input is com-
plemented and the 1 is added in the CS—to-SD recoder. In
this way, it is not necessary to compute the pre-additions.

Considering that the input and output are 9-bit and 12—
bit data, respectively, as on-line arithmetic is a digit-serial
arithmetic and the input sequence has to be processed in
8 cycles, radix 4 digits are used. Moreover, to simplify the
multiplication in the implementation of the recurrence, the
CS representation is converted into the symmetrical sign—-
digit format with digit set {—2,...,2} [4]. Then, they are

0-7803-2431-5/95 $4.00 © 1995 |[EEE

INPUT
SEQUENCE

SR, |<»
e -

Figure 2: Digit serial matrix—matrix multiplication unit

converted to a digit-serial format. Equation (3) is com-
puted in units MMM with an on-line implementation. Re-
sults obtained in the first 1-D DCT are converted to a
parallel non-redundant representation, using an on~the-fly
conversion unit [4], before being stored in the transposition
RAM. The operation of the second 1-D DCT is similar.

The structure of the parallel-to-serial converter and the
MMM unit for one of the subsequences is shown in figure
2. The bit—parallel data subsequence is shifted sequentially
into the set of registers R. Then, the contents of the R reg-
isters are simultaneously bit—parallel loaded in the SR shift
registers. Next, the data are digit-serial shifted out start-
ing with the most significant digit, while a new sequence is
loaded in the R registers.

Each element of the transformed sequence is obtained
as a Multiply and Accumulate (MAC) operation (eq. (3)).
These elements are computed concurrently using 4 MAC
units. Each MAC operation is implemented with an on-
line recurrence. Al MAC units of each matrix-matrix mul-
tiplication block receive the same 4 input digits and use a
different cosine coefficient set.

Then, to design an on-line unit for the computation of
the DCT, we have to derive an on-line algorithm to evaluate
equation (3).

3. ON-LINE IMPLEMENTATION

On-line arithmetic [3] is a digit-serial arithmetic in which
operations are executed most-significant digit first. To gen-
erate the p-th digit of the result, up to digit p + d of the
operands are needed, where d is the on-line delay. On-line
arithmetic requires the use of a redundant representation
for the results.

The algorithm we develop computes the 1-D DCT in
on-line format with respect to the inputs and the outputs,
and cosine coefficients are stored in parallel non-redundant
format. The input and output are expressed, as follows,

n+d
2(3) =) z()r,
p=1
n+d
y(@) = ()Y,
p=1
where r is the radix of the representation and n is the num-
ber of digits. Digits belong to a redundant set {—p,...,p},
with 7/2 < p < r—1. To obtain all the digits of the output,
n 4 d iterations must be performed. To simplify the nota-
tion we consider that input data and output coefficients are
fractional numbers.

zp(j) =0 for p>n

yp=0 for p<d (4)

On-line arithmetic has an iterative nature. At step
p, the on-line result obtained corresponds to the p most-
significant digits of the desired result. In general, an on-line
algorithm is specified recursively in terms of an internal
variable or residual, w, and the on-line representation of
operands and results, in such a way that iteration p uses a
digit of each input data, z,{7), and the residual w(i)[p—1],
to produce the next residual w(i)[p] and ar output digit,
Yp-d(1).

The residual w(i)[p] is defined as the difference between
the scaled accumulation, computed with the p most signif-
icant digits of the inputs, and the output computed up to
iteration p — 1 [2] [5]

w(i)lp] = ¥ ((Zc(s;j)zo)[p]) ~y(@)lp - 11) (s)

j=0

where z(7){p] and y(i)[p] are the representation of z(;) and
y(¢) with the p most significant digits. Then
3

w(i)lp] = r(w(i)lp — 1] = gp-a—1 (D)) + 774 e(i, 1) 2(4)

3=0

The operations involved in the recurrence are additions,
multiplication by a single radix-r digit and shift. Because
of addition, to achieve a fast implementation the residual
is represented in a redundant format {carry save or signed
digit). We select a carry—save form.

3.1. Selection function and on-line delay

The on-line delay depends on the radix, the redundancy p,
the representation of the residual and the selection function
for yp(1) [6]. Considering a carry-save representation for the
residual and that the output digit yp—4(i) is obtained by
rounding the carry-save form of the residual and selecting
its integer part, the residual is bounded as follows,

- 0.5 < (w(i)[p] - yp(1)) <0.54+27" (M
where t bits of the sum and carry words of w(i)[p] are as-
similated to obtain yp(i). To evaluate the on-line delay,
we calculate the maximum and minimum value of w(i)[p}

in equation (6) and substitute it in equation (7). First, we
define 3

8 = max {Z le(d, 7)1

j=0
The maximum value of w(s)[p] occurs when w(i)[p — 1]
is maximum and the digits of the output and the inputs are
p. With these conditions,
0.5+ 27" + pour 2 (0.5 +27°) + 8pinpr ¢ (9)
where pinp and pou: are the digits sets of the input and
output. In a similar way for the minimum B
~ 0.5 = pout < —0.57 — $pinpT (10)
Then, from equations (9) and (10},

SPinp
d> [logr (pm —(r— 1)(0.5+2“))] =

As said before, a radix 4 (r = 4) sign-digit format with
Pinp = 2 1s used. Then, to obtain a minimum delay and a

fast recurrence, we chose
Pout = 3, t=2 (12)

resulting in a on-line delay d = 2.

0<i<3p=39 (8

3276

L0z (0)

l L s P—canz
{ | r P

i I | [+ elh)z ,(2)

LAz,

Awp-1-y g)

V000

I 4-TO-2C8A j L

3-TO-2CSA l
R

_ 1
828,8,:8_185X...X

€2C1Cp*C1C rX...X

T

Yp_d U]
Figure 3: Block diagram of the recurrence

3.2. Implementation of the recurrence

Figure 3 shows a block diagram of the recurrence. We use
14 bits for the representation of the cosine coefficients. To
represent the multiplication of the cosine times a input digit
we add 3 integer bits. To perform the shift 4=¢ we add
another 4 bits. Then, the internal wordlength is 21 bits.

The clock period is limited by the delay of a 4~to—2
CSA, the CPA for the selection of the output digit and the
3-to-2 CSA for the subtraction of the output digit from
the residual. As domne in [6], to reduce the delay the CSA
for the subtraction between the residual and the output
digit is eliminated. This is done by expressing the term
4(w(s){p — 1] - yp—1(2)) of the residual as

sum = X X, X, XXX...X00 (13)

carry = 0 0 0 XXX...X00
where X3 X1 Xo.X_1X_, is the result of the assimilation of
the 5 most significant bits of w(i)[p — 1]. Now, the critical
path is formed only by the 4-to-2 CSA and the CPA.

A further improvement is to remove the CPA from the
critical path. To do this, we express bits X _; X_; X_, of
the output of the CPA as a function of the outputs of the
4-to-2 CSA, S and C. Figure 4 shows the resulting imple-
mentation. We denote the integer bits and 2 fractional bits
of the output of the 4-to-2 CSA as,

§=252515.5-15-2 C=0C3C1C5.C_,C_,
Since X2X1X0.X_1X_ is the output of the CPA,
X2=8.280C2 X1=8500C105.C, (14)

Moreover, the 4-to-2 CSA adds the S and C words of the
residual with A and B. The operation performed is

Ay A1 Ay . X...XXX
B, By B .X..XXX
X1 X1 X2.X...X00
0 0 0 .X...X00
S S So
C: C X

. 0 0)zp(0)
e ot Nz(1)
[o,2)z,(2)
.

o, 3) 2,(3)

8_18-18.2. XX .. X
C4C1C_2 XX.. X

4-TO-2 CSA Ao - y o
vt]

p-d-1

828180.81S-2 XX ___
CG2C1C0.- C4C-2 X.- X -

]

STAQGE 1

Yp -d m

PIPELINED CPA
AND
ROUNDING

Figure 4: Implementation of the recurrence

B, ¢y C A oBy 54 G4 c, A0B052 ¢, A4 By 83 C4

Alz s_} s_f 5, I }
D1
E
S o B Co 84
MODIFIED 4-T0-2 CSA STAND. 4.2 CSA

Figure 5: Modified 4-to-2 CSA

Then, as shown in figure 5, the three most significant bits of
the 4-to-2 CSA are modified according with equation (14).

Since the CPA has been removed from the critical path,
this path is formed only by a 4~to—2 CSA. The CPA outside
of the recurrence is divided into two stages to adapt to the
cycle time.

4. TIMING ANALYSIS

Figure 6a shows the timing of the on-line 8-point 1-D
DCT. Each two cycles the elements of the carry save se-
quences are obtained and recoded to radix-4 signed digit
format. In 7 cycles the sequence is stored in the SR reg-
isters and to discharge the SR registers 6 clock cycles are
needed, one clock cycle per digit. The most significant digit
of the transformed sequence is available 7 cycles later, due
to the on-line delay, d = 2, and the pipelining of the MAC

3277

INPUT
RECODING -t
LOAD REG.R [l].couv.
LOAD REG. 8R [© | NPARALLEL
SHIFT OUT DiGITS L an]
l o -
L e o o o]
MAC (5STAGES) ———— | SiMACUNTS
L e o o o
ON THE FLY -
=
result
4 CLOCX
2)
24 CYCLES
81-D ‘.I .
Dcrs | SY- ..
24 CYCLES
8 ——
81-D [eyl -
DCTs
b)

Figure 6: Timing of the 2-D DCT

unit. The transformed sequence is converted to a parallel
non-redundant representation in the on-the-fly unit in 6
cycles, starting once the most significant digit of the re-
dundant output has been obtained. This unit performs the
conversion as the digits are produced and does not require
carry propagation. The latency of the on-line 1-D DCT is
24 cycles.

Figure 6b shows the overlapping in the computation of
the 8-point 1-D DCT over different input sequences. The
computation of a new DCT starts each 8 cycles, without
loss of cycles.

5. EVALUATION

In this section we compare the architecture we have de-
veloped with other architectures that implement the 2-D
DCT. The comparison is based in the clock frecuency and
silicon area.

The critical path of the architecture is composed of one
4-to-2 CSA and one register. This is the same as the crit-
ical path of implementations with distributed arithmetic
and CS accumulation [7] and parallel implementations with
CS arithmetic [8] and lower than other type of implemen-
tations.

The area of the on-line implementation is smaller than
the area of the parallel implementations, because each mul-
tiplier is replaced by two 4-to-2 CSAs and one 5-bit CPA.
Moreover, the interconnections among elements is digit se-
rial, resulting in a lower routing overhead than bit parallel
interconnections.

Now, we compare the area of the on-line and distributed
arithmetic implementations. Table 1 shows the typical com-
ponents. In distributed arithmetic, to maintain a contin-
uous data flow, two adjacent bits of each input must be
processed each cycle. But it is necessary to duplicate the
ROM memory where partial products are stored. Then,
each MAC unit needs two 4-to-2 CSAs and four 16-words
ROM memories. This results in the same number of adders
of the on-line implementation and a larger ROM memory.

In the on-line architecture, we need only two 16-words
ROM memory modules to store the cosine coefficients, as
the two 1-D DCTs can share the same ROM memory.

COMP. ON LINE DISTR.

RAM 2 mod. 64 words | 2 mod. 64 words

ROM 2 mod. 16 words | 64 mod. 16 words

4-2 CSA 32 of 21 bits 32 of 18 bits

CPA 16 of 5 bits 2 of 16 bits

CONV. 4 2

MUX 16x17 mux 3:1 4x16 mux 8:1
1X12 mux 8:1

CODERS CSA to SDA

Table 1: Comparison

Other components of the distributed arithmetic archi-
tecture are CPAs to convert from CS to non-redundant rep-
resentation at the output of each 1-D DCT and parallel~to-
serial converter at the input. This results in a higher silicon
area than in the implementation with on-line arithmetic.

6. REFERENCES

[1] A. Artieri, S. Kritter, F. Jutand and N. Demassieux,
“A One Chip VLSI for Real Time Two Dimensional
Discrete Cosine Transform”, Proc. ISCAS’88, pp. 710-
704, 1988.

[2] R.H. Brackert, M.D. Ercegovac and A.N. Willson, “De-
sign of an On-Line Multiply-Add Module for recursive
Digital Filters”, 9'* Symp. Computer Arithmetic, pp.
34-41, 1989.

[3] M.D. Ercegovac, “On-Line Arithmetic. An Overview”,
Proc. SPIE, vol. 495, Real Time Signal Processing VII,
pp- 86-93, 1984.

[4] M. Ercegovac and T. Lang. “Division and Square Root:
Digit~Recurrence, Algorithms and Implementations”.
Kluwer Academic Pub., 1994.

[5] M.D. Ercegovac and T. Lang, “Fast Arithmetic for
Recursive Computation”, VLSI Signal Processing V,
IEEE Press, pp. 14-28, 1992.

[6] J.S. Fernando, “Design Alternatives for Recursive Dig-
ital Filters Using On-Line Arithmetic”, Ph.D. Thesis,
University of California at Los Angeles, 1993.

[7] U. Sjéstrdm, I. Defilippis. M. Ansorge and F. Pellan-
dini, “Discrete Cosine Transform Chip for Real-Time
Video Applications”, Proc. ISCAS’90, pp. 1620-1623,
1990.

[8] U. Totzek, F. Matthiesen, S. Wohlleben and T.G. Noll,
“CMOS VLSI Implementation of the 2-D DCT with
Linear Processor Arrays”, Proc. ICASSP’90, pp. 937-
940, 1990.

[9] S.I. Uramoto, Y. Inove, A. Tabakake, J. Takeda, Y.
Yamashita, H. Terane and M. Yoshimoto, “A 100 MHz
2-D Discrete Cosine Transform Core Processor”, IEEE
J. Solid State Circuits, vol. 27, no. 4, pp. 492-499, 1992.

3278

