CLIFF: C LANGUAGE INTERFACE FOR THE FUNCTIONAL SIMULATOR

Kurt Baudendistel

AT&T Bell Laboratories
Murray Hill, NJ 07974
baud@research.att.com

ABSTRACT

Linkable simulators for Programmable Digital Signal Pro-
cessors allow the development of heterogeneous executables
that mix object code executing directly on a host worksta-
tion with object code executing indirectly on a target device
via a software simulator or hardware emulator running on
the host. However, these linkable simulators typically re-
quire extensive development of interface code to create such
heterogeneous executables. This new tool allows interface
code to be generated automatically, allowing the creation
of heterogeneous executables with only minor modifications
to original C language source code.

Since the required modifications to the original source
code are minor and independent of the execution domain,
a new methodology of porting DSP applications from host
workstations to PDSPs can be considered, where functions
are moved one at a time from the host to the target execu-
tion domain.

1. INTRODUCTION

Modern, high level computer languages make the task of
porting software from one platform to another quite man-
ageable, given that both platforms provide equivalent lan-
guages, arithmetic capabilities, library support, software
development tools, and and run-time environments. This is
not the case, however, when developing production-quality
software for a DSP application targeting a Programmable
Digital Signal Processor (PDSP), precisely because the host
and target platforms are quite dissimilar.

Traditionally, C language host code simulating an entire
DSP application and PDSP assembly language target code
realizing that same application are separately created and
compiled to produce two homogeneous executables.! From
the shell prompt of a host workstation, the host code is
then directly executed, while a software simulator or hard-
ware emulator is invoked to execute the target code.? The
ultimate goal of such software development is to produce
equivalent executables in the two domains, but this is a
difficult and labor intensive process.

1 Compile here is taken to mean conversion of source code,
both high level or assembly language, into object code.

2The term simulator will be used henceforward to refer to
both software simulators and hardware emulators or accelera-
tors. While the distinction has significant practical implications
in terms of processing speed and communications costs, it has
no bearing on this discussion regarding interface code genera-
tion. The tools and methodologies presented here can be applied
to both hardware and software realizations with equal success.

3263

Recent advances in PDSP simulators, however, allow
the creation of heterogeneous executables. “Linkable” or
“object code” versions of such simulators have become avail-
able which allow target code to be invoked and executed
from within host code [1]. This allows the mixing of host
and target code in a single, conceptual executable with
object code “executed” by a processor of the appropriate
type—the result is heterogeneous execution of the DSP ap-
plication. This capability is similar to the remote proce-
dure call capabilities of the UNIX operating system, which
provide a standardized method for realizing heterogeneous
execution in a workstation environment.

Like remote procedure calls, however, linkable PDSP
simulators are difficult to use from the point of view that
significant attention must be paid to the interface between
host and target code [1]. A typical application requires
extensive recoding at the point where a transition is to
be made between host and target execution, and this can
become especially onerous if the point of transition is to
be changed relatively often during the code development
process. For this reason, linkable simulators are most of-
ten used not as stand alone tools by end users, but rather
they are used by designers of systems such as Ptolemy or
COSSAP to incorporate heterogeneous execution capabili-
ties into these DSP design environments [2, 3]. While the
use of heterogeneous execution within such environments
can alleviate many of the problems associated with code
development, it provides no relief outside of the environ-
ment.

The process of generating the required interface code
can be automated, however, by using a compiler. The C
Language Interface For the Functional simulator (CLIFF),
uses a compiler to convert original C language application
code, with minor modifications, into the C language inter-
face code required to drive a linkable simulator. Further-
more, since only minor modifications to original C language
source code are required to utilize CLIFF, a new method-
ology of porting DSP applications from host workstations
to PDSPs can be used. Host and target domains are con-
sidered to exist, and individual functions and external vari-
ables are assigned to one of the two domains on an item-by-
item basis at compile time. C language functions can then
be migrated one at a time from the host domain to the
target domain, with (1) a C compiler or assembly language
programmer providing the target object code, (2) a link-
able simulator providing the execution environment for that
code, and (3) CLIFF automatically generating the interface
code required by the linkable simulator. When hand-coded,
assembly language target code is to replace original C lan-
guage source code, the results of these two versions of a

0-7803-2431-5/95 $4.00 © 1995 IEEE



function can be directly compared to verify the correctness
of the new code. Such incremental cross-compilation using
CLIFF provides a secure path for code migration from host
to target, allowing verification at all steps along the way.

2. COMPILATION

CLIFF allows the programmer to control the domain in
which object code is to be executed, without changes to
the C language source code of the application, given that
the coding conventions presented in the next section are
followed. Alternate compiling and linking steps are all that
are required to use CLIFF to change the domain in which a
function is executed. The granularity of this control is the
same as that used for other purposes in the C language—the
file.
Consider the C compilation command

$ cc a.c b.c c.c (1)

which compiles the three source files and links the result-
ing object files to produce the executable a.out. Other
command line options can of course be added to alter this
compilation process.

Conceptually, the CLIFF compilation command

$ cliff -host a.c -transition b.c -target c.c (2)

is equivalent, except that it produces a heterogeneous ex-
ecutable where execution is divided between the host and
target domains. Practically, this command is actually much
more complex:

1. Compile b.c into interface code known as stubs into
stub-b.c. Note that the original external data and
function definitions, not declarations of same, are
compiled into stubs.

2. Compile a.c and stub-b.c into host object code and
link to produce a host executable a.out.

3. Compile b.c and c.cinto target object code and link
to produce a target executable a.out-cliff.}

Any command line options or files appropriate for cc are
appropriate for c1liff—they are simply routed to one of the
3 compilations steps listed above. Of course, assembly lan-
gunage files can be specified on the command line as well, as
long as they are routed appropriately to the host or target.
Additionally, several cliff-specific options are available to
perform optional bookkeeping and debugging functions.

cliff allows the programmer to route command line
files and options, and thus partition the functions contained
in the source files, using switches to control the compilation
state of command line processing: ~host, ~transition, or
-target.! The compilation state in force when the file name
is encountered on the command line determines the type of
the functions contained in that file:

Host functions can be called only from within other host
functions and execute on the host.

3This executable is not useful in isolation—functions con-
tained in it are to be invoked from the host executable a.out
via calls to the linkable simulator contained in the stubs.

% Actually, the -transition compilation state is equivalent to
parallel specification of ~stub and -target compilation. Separate
specification is required when hand-coded assembly language is
to be used.

Transition functions can be called from within any func-
tion but execute on the target.

Target functions can be called from within transition or
target functions and execute on the target.

External data is also partitioned according to the compila-
tion state. Host-, transition-, and target-external data can
be accessed from host, any, and transition or target func-
tions, respectively. In (2), a.c is considered to contain host
functions and data, b.c transition functions and data, and
c.c target functions and data.

While this partitioning is static with respect to a given
compilation, it is not static between compilations. For ex-
ample, the compilation expressed by (1) effectively places
all functions and external data in the host domain. Spec-
ification of the partition on the command line allows any
partition to be produced with no modifications whatsoever
to the original C language source code.

3. TRANSITION CODING CONVENTIONS

The transition is the point at which control passes between
the host and target domains—the call and return of a tran-
sition function. While flow control is obviously vital, a tran-
sition is only of real value if information can be communi-
cated across the transition. When a transition is made with
CLIFF, the state of the target machine, registers and mem-
ory, is set up as needed, the target function is executed and
ultimately returns, and the state is copied back to the host
registers and memory as needed.

Because of the basic nature of the transition as an inter-
face between two, separate machines, each with associated
register sets and memory spaces, only a restricted subset
of the data types of the C language can be communicated
through the transition. Furthermore, the mechanism for
this communication is not exactly like that of the C lan-
guage.

The most basic requirement is that parameters must be
passed by value. For most quantities, this is not a problem,
since this is the usual parameter passing mechanism of the
C language. Arrays, however, present a problem that is
discussed in detail below.

The second important requirement is that the data val-
ues in the host and target memory spaces be structurally
equivalent. That is, the bit patterns in the host and target
memory spaces must be identical even though the word sizes
of the two machines may be different. If this is not the case,
translation would be required to convert from one form to
the other. One form of translation is performed automati-
cally by CLIFF for the DSP1610—character strings are con-
verted from the host format, a null-terminated sequence of
characters represented by 8-bit bytes, to the target format,
a O-terminated sequence of characters represented by 16-bit
words. This translation feature is provided so that debug-
ging information can be passed into and printed from within
target code. Other translation rules could be devised, but
any fixed set would ultimately fall far short of the capabil-
ities desired by users, and a general translation mechanism
is beyond the syntactic scope of the C language. No facili-
ties for translation in the transition are provided by CLIFF,
except for character strings.

Because of these two requirements, only a restricted
subset of C language data types can be passed through the
transition:

3264



Constant-sized integral scalars, here types short and
long, can be passed as parameters, return values, or
external variables. Constant-sized here means that
the sizeof() the data type is the same in the host
and target domains.®

o [EEE single-precision floating-point values, here type
float, can be passed as parameters, return values, or
external variables.

e Structures consisting of a single-size scalar at the
atomic level, short or long/float, can be passed as

parameters, return values, or external variables.®

o Arrays of any other legal quantities can be passed as
parameters or external variables. Multidimensional
arrays are allowed.

o Read-only strings, here type const char #, can be
passed as parameters.

Non-constant-sized integral scalars, here types char and
int, other non-integral scalars, here type double, point-
ers, and structures other than those noted above cannot
be communicated through the transition because they are
translational entities.

Arrays present a special challenge for CLIFF because, in
the C language, arrays are passed as parameters to func-
tions by reference—a pointer to the first element is simply
provided. The dual memory spaces of the host and tar-
get require, however, that the arrays be passed through the
transition by value. Note that a function definition with an
array as a parameter can take any one of three equivalent
forms in ANSI C:

void moe  (short #i) {...}
void larry (short i{]) { ... }
void curly (short i[10]) { ... }

In all cases, the parameter i is implemented within the
function as a pointer. The definition of the function curly,
however, uses what is termed here a sized-reference param-
eter. While the array dimension 10 is ignored by the C
language compiler, it is used by CLIFF to determine that
the reference parameter i points to an array of 10 elements,
each of type short. This allows arrays to be passed through
the transition by value, since the ultimate size of the entity
to which the reference refers is given.

Transition functions with reference (pointer) parame.
ters are not legal with CLIFF, but transition functions with
sized-reference parameters are allowed. Sized-reference pa-
rameters effectively transform the call-by-reference mecha-
nism used by the C language for arrays into the call-and-
return-by-value mechanism used by CLIFF. This mechanism
is described as “call and return by value” because the array
is copied from the host memory space to the target memory
space at the invocation of the transition function, and it is
copied back from the target space to the host space when
the function returns. If the array is declared const, how-
ever, no return-copy takes place, and the mechanism can
be described by the more familiar term “call by value.”

51t is assumed here that the host compiler uses 8-bit chars, 16-
bit shorts, and 32-bit ints and longs, while the target compiler
uses 16-bit chars, shorts, and ints, and 32-bit longs. With
different assumptions, a different set of integral types would be
constant-sized and hence legal in the transition.

8 A single-size at the atomic level is required because align-
ment differences in the host and target can make other structures
translational.

For simple calling interfaces, call-by-reference and call-
and-return-by-value are equivalent, but it is important for
the programmer to understand the subtle difference so that
aliasing, the use of different names for the same data, does
not cause problems. Aliasing can cause incorrect results in
CLIFF simulations if

¢ A transition function that takes two non-const sized-
reference parameters as arguments is invoked with
the same array for both arguments, or

¢ A transition function that takes a non-const sized-
reference parameter as an argument is invoked with
a transition-external array as that argument.

Three other potential pitfalls of sized-reference param-
eters are the following:

1. Scalar arguments to be passed by reference must be
defined using a sized-reference parameter rather than
a pointer:

bob (short whitel[1]) { ... }

2. Arguments that are pointers to arrays to be accessed
at an offset from the given pointer value can be han-
dled simply by increasing the array size for positive
offsets:

this (short works[OFFSET+SIZE]) { ... }
Negative offsets cannot, however, be accommodated.

3. Array arguments with a length that is to be deter-
mined at run-time can be most easily handled us-
ing the variable-length array capabilities of gcc [5].
The result, however, is non-ANSI compliant C source
code. If this is a significant concern, other mecha-
nisms, such as const declarations with arrays padded
out to their maximum length or preprocessor macros,
can be used to produce ANSI compliant code.

Even with all of these caveats, however, sized-reference pa-
rameters are quite easy to use in practice since aliasing and
the other special cases are not particularly common occur-
rences in DSP applications.

4. TARGET CODE INTERFACE

The conventions used in receiving data via the transition
in the target domain are controlled by the type of -frame
in use for the system. Any kind of frame could be defined,
but two of special interest that are described here are the C
frame, which realizes the calling conventions of the target C
compiler, and the register frame, which gives the program-
mer full control over the transition. Note that these frames
are mutually exclusive compiler options, and one must be
used for an entire CLIFF simulation system.

4.1. The C Frame

The C frame realizes the calling conventions of the GNU C
Compiler gcc in the target domain. As such, it is suitable
for use when the run-time environment of this compiler is in
use—stack structure, calling conventions, etc. In this case,
no additional code must be provided by the programmer to
effect the transition, since (1) transition-external definitions
allocate storage for external variables and (2) the stack it-
self is used to allocate storage as needed for sized-reference
parameters that must be passed and returned by value.

3265



4.2. The Register Frame

The register frame, however, assumes nothing about the
structure of the run-time environment of the target code,
even regarding the existence of a run-time stack. This ca-
pability is quite powerful, in that any coding or calling con-
ventions can be accommodated, but it also places an addi-
tional burden on the programmer to specify variable names
appropriately and to provide any required memory buffers.

The asm construct of the GNU C Compiler can be used
to set assembly language names to something other than
their default values:

short a; /* default name: _a */
short a asm ("a"); /* explicit name: a */

While this construct may be of some use with the C frame,
for the register frame the assembly language name of an
external variable determines how that variable is passed
through the transition:

short x; /* in Y memory at _x */
short x asm ("z"); /# in Y memory at z #/
short x asm ("Z"); /* in X memory at Z =*/
short x asm ("al"); /* in register al */

The default mechanism is to place the external in memory
at the named location, but if the name used is that of a
register of the target device, then that value is loaded to and
restored from the target register instead (al is a register of
the DSP1610).

The C name of a function parameter determines how
that parameter is passed to and returned from the target
domain:

¢ Parameters with common names are stored in mem-
ory that must be allocated with the name _name.

o Non-sized-reference parameters with register names
have the named register set to the parameter value
upon function entry.

o Sized-reference parameters with register names must
have storage allocated with the name _function-name
_register-name. On function entry, memory is set to
the values of the parameter, and the register is set to
the address in memory at which the values have been
stored.

The register from which a function return value is taken,
other than the default (a0 for the DSP1610), can be speci-
fied by giving an assembly language name for the function
of the form function-name$register-name.

The memory space used in the transition is usually the
Y memory (data) space. If the assembly language name is
given with no lowercase letters, however, this quantity is
placed in the X memory (code) space rather than in the
Y memory (data) space. This convention is used for both
external data and parameters, including sized-reference pa-
rameters with register names. Thus, a common notation
with the register frame for the DSP1610 will be the use of
the parameter name PT for sized-reference parameters, in-
dicating that the data should be stored in the X memory
(code) space at the address _function-name_PT and that the
pt register is to be loaded with this address. If this code
space is ROM, the const qualifier would also be appropri-
ate.

5. SUMMARY

CLIFF provides an automatic mechanism for generating the
interface code needed to exploit the capabilities of a PDSP
simulator to produce a heterogeneous executable from orig-
inal C language source code. Because the partitioning of
functions and external data between host and target do-
mains takes place via cliff command line options, source
code can be easily and readily moved between domains, al-
lowing incremental cross-compilation to be used as part of
the process of porting code from the host to the target.

CLIFF has been implemented using an SGI Indigo as
the host and the AT&T DSP1610 as the target, and it has
been in use for the past year at Murray Hill. Two ver-
sions of CLIFF have been implemented, one based on the
lcc compiler and one based upon the GNU C compiler gcc
(4, 5]. While both provide baseline ANSI C compatibility,
the GNU C compiler also provides several important lan-
guage features over and above those of ANSI C, most no-
tably variable length array notation and C++ compilation
capabilities.

Porting the current DSP1610 target to another host
platform would be a simple task, given that gcc and the
DSP1610 linkable simulator have already been ported to
that platform [1, 5]. Developing CLIFF for alternate PDSP
targets would be more challenging, but straightforward,
given an equivalent linkable simulator and GNU C compiler
for the new target. Developing CLIFF to interface with a
hardware emulator or accelerator would require simply ex-
changing the linkable simulator interface for an equivalent
linkable emulator or accelerator interface.

The C++ compilation capabilities of the GNU C com-
piler are of special interest for heterogeneous compilation.
One of the significant problems associated with PDSP code
development is that the transition between host and target
domains with the C language requires structurally equiv-
alent parameters and external data—the bit patterns in
memory must be exactly the same in the two domains. Al-
lowing alternate representations in the two domains and
providing for automatic translation between them will cre-
ate the much more powerful and flexible simulation capabil-
ities needed to deal with problems such as those presented
by fixed-point arithmetic. Translation strategies could be
embedded in CLIFF, but such fixed translation strategies are
doomed to failure because of the wide variety of data for-
mats that will certainly be required. Future development of
CLIFF will concentrate on using C++ to allow user-specified
parameter translation in the transition.

6. REFERENCES

{1] DSP1600-LFS User Guide, AT&T Microelectronics,
1994.

[2] Lee, Edward A., et al., An Overview of the Ptolemy
Project, University of California at Berkeley, 1994.

[3] COSSAP User’s Manual, Cadis, GmbH, 1993.
(4] Fraser, Chrisopher W., and Hanson, David R., 4 Code

Generation Interface for ANSI C, Technical Report CS-
TR-270-90, Princeton University, 1992.

[5] Stallman, Richard M., Using and Porting GNU CC,
Free Software Foundation, Inc., 1993.

3266



