CYCLO-STATIC DATA FLOW,

Greet Bilsen, Marc Engels, Rudy Lauwereins, J.A. Peperstraete

Katholieke Universiteit Leuven, Department ESAT
Kardinaal Mercierlaan 94, B-3001 Heverlee, Belgium
Tel.: +32-16-32 11.11, Fax.: +32-16-32.19.86
email: Greet.Bilsen@esat.kuleuven.ac.be

ABSTRACT

The high sample-rates involved in many DSP-applications, re-
quire the use of static schedulers wherever possible. The con-
struction of static schedules however is classically limited to
applications that fit in the synchronous data flow model. In this
paper we present cyclo-static data flow as a model to describe
applications with a cyclically changing behaviour. We give both a
necessary and sufficient condition for the existence of a static
schedule for a cyclo-static data flow graph and show how such a
schedule can be constructed. The example of a video encoder is
used to illustrate the importance of cyclo-static data flow for real-
life DSP-systems.

1. INTRODUCTION

Multi-processor environments are often used for prototyping and
real-time emulation of high-frequency Digital Signal Processing
(DSP)-applications to reduce development costs and “time-to-
market”. To help the designer with mapping the application on
the hardware, specialised programming environments were de-
veloped (e.g. [1], [2]). Such tools assign the tasks to processing
devices, route the data through the network and determine the
task-execution order. This can be done either at run-time
(dynamic) or at compile-time (s¢atic) [3]. In a dynamic scheduler,
a run-time supervisor determines when blocks are ready for exe-
cution and schedules them onto processors as these turn idle. Due
to the supervising overhead, such schedulers are mostly not
suited for DSP-applications that have to operate at very high
sample-rates (order of MHz) [4]. Static schedulers, on the other
hand, determine a task execution order at compile-time. This
schedule is then executed periodically on the incoming sample-
stream with minor run-time overhead (only synchronisation on
external data is required), such that real-time performance can be
obtained.

* i
Fig. 1. Synchronous data flow.

The existing mapping tools however can only construct static
schedules for applications that fit in the synchronous data flow
model [1], [3]. In synchronous data flow every task behaves iden-
tically each time it fires, producing and consuming the same

3255

fixed amount of tokens (x; respectively y¥ in fig. 1). If for all
edges u, x, =y} =1, the application is said to be single-rate,
otherwise it is a multi-rate application. In practise many
applications do not have a fixed but a cyclically changing behav-
iour, like the audio example of fig. 2. At the input of the system
left and right channel samples arrive alternatively. A demulti-
plexer consumes the arriving sample and passes it to the appro-
priate successor block, being the left channel operator for every
@n+l)th and the right channel operator for every 2nth sample.
Although this behaviour is known exactly at compile-time, it does
not fit in the synchronous data flow model and hence a static
schedule cannot be constructed with the classical tools.

static int s=0;
re|
{i

=0
—E? . 3alue)(i)->1;s=l;
}c s:n.luc(i)&r;FO;

Fig.2. Left-right audio channel example.

To solve this problem, we introduced the cyclo-static data Sflow
paradigm. In cyclo-static data flow the number of tokens pro-
duced and consumed by a single task is still known at compile-
time, but changes periodically as is shown in fig. 3. In this graph,
task v produces x; (i) (1Si<P)) tokens every (n*P¥+i)th
time it is invoked. The consumption behaviour of task w is simi-

lar.
Qim'x:‘(z),....x;‘(h“) Pl D YD, Y (Qh) Q

Fig. 3.

Cyclo-static data flow.

The rest of this paper is constructed as follows. In part 2 we dis-
cuss the schedulability of cyclo-static data flow graphs. In part 3
the example of a video encoder is used to accentuate the
importance of cyclo-static data flow for real life DSP-
applications. And finally in part 4 some conclusions are given.

2. CONSTRUCTION OF A STATIC SCHEDULE FOR
CYCLO-STATIC APPLICATIONS

In this section we will discuss the schedulability of cyclo-static
data flow graphs. After introducing some notations in 2.1., we
present both a necessary and sufficient condition for the existence
of a static schedule. Two scheduling approaches are discussed in
23. and in 2.4. we show how scheduling is actually done in

0-7803-2431-5/95 $4.00 © 1995 |IEEE

GRAPE-IL. Due to space limitations, the proofs to all theorems
had to be dropped.

2.1. Notations.

Global notations:
Ng: number of nodes in a cyclo-static data flow graph G
th

v(n,): n, " invocation of task v; i.e. the n, th time that task
v is invoked during the execution of the schedule
=(n-1)mod m+1

=(n-1)divm+1

Notations to describe the production of task v and the consump-
tion of task w on edge u:

nmod, m
ndivi m

ini(u): number of initial tokens on edge u

P, Q% period of the production (consumption) sequence
of task v (w) on edge u

P: least common multiple of { B*,0¥ }, taken among

all inputs and outputs of task v
x,(k),y,,(k) :number of tokens produced (consumed) by task
v(w) on edge u during its KR invocation
kth element in the production (consumption)
=1 sequence of task v (w) onedge i;if 1S k< P* (Q%)
x5 (y) mod; BH(QR)i k> P(QY)
X, (i),Y,/(i): number of tokens produced (consumed) by task
v(w) on edge u during the first ; invocations, or

X4@)= Y w0)= (k) |(For i = 0,
k=1 k=1
we define X, (0)=Y%(0)=0.)

2.2. Conditions for a static schedule to exist

The static schedule of a DSP-application will be executed repeti-
tively on the incoming data-stream. For a proper run-time execu-
tion it must guarantee that all necessary data are available when a
task is executed and that the amount of data in the buffers re-
mains bounded. This imposes certain conditions on the graph.
For a multi-rate graph a necessary condition for the existence of a
valid static schedule is presented by Lee in [3]. His theory can
easily be extended towards cyclo-static data flow graphs as well.
The result of this is given in theorem 1.

Definition - Given a connected cyclo-static data flow graph G.

A vector gg = [ql,qg,...,qNG]T representing the number of invo-
cations of the tasks of G in a valid static schedule is called a

repetition vector of G.
Theorem 1 - For a connected cyclo-static data flow graph G, a

repetition vector g = [ql,...,qNG 1" is given by:
Biifi=j
0;otherwise

Gg = P.F,with P.; ={)
where the sequence repetition vector 7= ['1"'2»-~»’NG " is a
positive integer solution of the balance equation:

r.r=0 2)
and where the topology matrix T is defined by:

(P; /P;.).Xj-(Pt;'); if task j produceson edge i
L= ~(P;/ Qj-).Yj-"(Qj'); if task j consumes fromedgei (3)
0; otherwise

Theorem 1 shows that a repetition vector and hence a valid static
schedule can only exist if equation (2) has a positive integer so-
lution. A graph that meets this requirement is said to be consis-
tent. Although consistency is required, it is not sufficient for a
valid schedule to exist. Balancing production and consumption on
the edges does not exclude deadlocks. If such a deadlock-free
schedule actually exists, the graph is said to be alive. Sufficient
conditions for a consistent multi-rate graph to be alive were given
by Lee in [3] and by Karp and Miller in [5]. A method to check
the aliveness of cyclo-static data flow graphs is given in theorem
3. Like in the method of Karp and Miller, we only have to check
the singular loops in the graph to control its aliveness.
Definitions - A loop L in a cyclo-static data flow graph is a

Uiz Lo %) BN -LNp U
Vy —>... \4 N, >V,

directed path v

where the end-node equals the start-node. A singular loop is a
loop where every task appears only once. The first-producing-
invocation FPI(vj,nj,L) of vj(nj) in L, is the first invocation

vj(s]-) (stnj) with non-zero production towards Vil The
first-dependent-successor-invocation FDSI(vj,n ;L) of vj(nj) in
L is the first invocation of Vi4 that requires data produced by
vj(nj) to become The
FDS(vj,nj,L) of vi(n;) in L, is the invocation sequence

executable. first-data-sequence

Vj("j)---vj(Sj)Vj+1(”j+1)-uVj+1(sj+1)---VNL (sNL)Vl("1)-~~Vj-1(5j—1)"j(”'j)
» Where s = FPI(vi,ny,L) and n, = FDSI(v,_,,s,_,,L). (For the

last element in the sequence we have n‘j = FDSI(v;_y,s;_1,L)).

To construct an FDS-sequence, we start from v ;(n;) and pass by
successive invocations of v j» until we find an invocation s ; that
produces data towards v;,,. Then we pass to Vis(njy), where
n;yy is the first invocation of v j+1 that requires data from v j(s i)-
Here again we pass through a number of subsequent invocations
of v;,; and go further towards v i+2 once we found a data-produc-
ing invocation Vis1{Sj41). This procedure is then repeated until
we finally arrive at invocation n'j of task v ;- The FDSI-calcula-

tions involved can be done by use of theorem 2, while the de-
termination of the FPI of a non-producing task-invocation re-
quires a partial traversal of the production sequence.

Theorem 2 - In a cyclo-static data flow graph, the first token
produced during the n, th invocation of task v on edge u

(v—L5w) will be consumed during the nwth invocation of task
w, where n,, is given by:

n,, = {lini(u) + X;' (n, = D)Idiv Y (Q4)} * Q% +n,
with:

1<n, <0
Y (ny, — 1) < [ini(u) + X¥ (n, = Dlmod Y4(Q4) < Y4 ()

C))

Theorem 3 - Given a singular consistent cyclo-static loop L
with basic repetition vector §;, and v ; an arbitrary node of L. L is

3256

alive iff FDS(vj,sf,L)=vj(sf)vj,,_l(nfi'll)...vj(nf"'l) ends on an

instance nf“ for 0<k<m. In this formula

k_ k 0
sj= FPI(vj,nj,L), n; ;
initially executable and m corresponds to the first invocation of
v; for which FDS(vj,s}",L) passes by a task-invocation
n™*!> g of atask v; of L.

of v;

!
> Sj i

By selecting the task with the smallest number of data-producing
invocations, we can minimise the calculation work required to
check the aliveness of the graph. An upper bound on this calcu-
lation work per loop is then proportional with the amount of tasks
.in it and the minimal number of data producing invocations.

2.3. Scheduling approach

Once we have determined a repetition vector and checked the
aliveness of the graph, a multiprocessor schedule for the applica-
tion can be constructed. There are two basic strategies for this.
The first approach consists in transforming the original cyclo-
static data flow graph into a single-rate equivalent and construct
a schedule by use of existing single-rate tools. A number of dis-
advantages are associated with this method.

e The size of the graph increases enormously.

e When successive task-invocations are assigned to different
processors, internal status is not handled properly. The only
way to solve for this problem consists in making the status
external prior to the graph transformation and consider it as a
normal token that needs to be transported. Checking whether
a task contains status and making it external is a hard task,
certainly when dealing with library elements. In these
elements the internal structure of the task is mostly hidden to
the user, such that no information about status is available
and that it cannot be made external.

e Another point of attention concerns the management of the
data-transport between task-instances. When a task-instance
requires data from more than one instance of a predecessor
task, a special "collect” task [2] is required to put those to-
kens in the right order for consumption. Similarly a spread
task is required when output samples need to be send to more
than one successor instance. When tasks are significantly
mixed, these spread and collect tasks become quite compli-
cated to implement and cause extra schedule overhead.

To avoid these problems, we propose a different method, where

we work with the original graph. In this approach we force all in-

stances of a task to be executed on the same processing device.

The automatic serialisation involved, has a number of advantages

compared to the graph-transformation method.

¢ Correct handling of internal status is intrinsic to the method.
A status variable calculated and stored by one instance of a
task will automatically be used by the next instance of the
task on the same device, always being the next time-instance.

¢ All task outputs are automatically generated in the right order
for consumption by a successor task. This makes that no spe-
cial data-management tasks (collect and spread) are required
anymore, but that FIFO-buffers are sufficient.

¢ Program as well as data-memory is reduced since code does
not need to be duplicated over more devices.

is the first invocation of v that is not -

¢ Another advantage of this method is that the graph itself does
not need to be transformed into a single-rate equivalent prior
to scheduling. This limits the memory required to store the
application and keeps the problem smaller and more easy to
handle.
A drawback of this method seems to be a reduction of the paral-
lelism actually exploited, compared to that available in the corre-
sponding single-rate schedule. This may be true when all task-
instances are independent. Many tasks in DSP-applications (like
filters) however, contain status such that they always need to be
executed serially. Even when we succeed in making this status
external, the different instances will mostly be assigned to the
same device saving a lot of communication overhead. Sometimes
however the extra parallelism is required to obtain real-time per-
formance. In this case a (partial) graph-transformation that splits
some of the cyclo-static tasks in a number of independent in-
stances, can be performed prior to assignment. Until now such
splitting decisions need to be made by the user, but we plan to
develop a tool that will automatically detect whether more paral-
lelism is desirable or not.

2.4. Scheduling in GRAPE-II

In GRAPE-II assignment, routing and scheduling are performed
consecutively in separate tools, each of them working directly on
the original graph.

The scheduler uses a depth-first tree-wise search strategy with
backtracking to construct a makespan optimal schedule. In this
strategy a global schedule is constructed by iteratively extending
a partial one with one extra task. In each step all placeable tasks
are determined and ordered such that the task most likely to lead
to the smallest makespan is placed first in the list. The partial
schedule is then extended with the first element from this list.
Once a complete schedule has been constructed a backtracking
phase is started. During this backtracking the scheduler checks if
there exists a better schedule than the one already obtained. It
goes back to the last decision point where there are still placeable
tasks left and takes the next task in the ordered list. From such
point on the forward procedure is resumed until a complete
schedule is obtained or a partial one is no longer expected to re-
sult in a shorter makespan than the shortest one obtained until
then. In a cyclo-static graph, we call a task-instance placeable
when all instances with lower index are scheduled and enough
input data have been produced by predecessor tasks to fire the
current instance as well. Formulas to check this mathematically
are given in [6], while the heuristics used for ordering the tasks
and calculating lower bounds can be found in [7].

3. CYCLO-STATIC DATA FLOW EXAMPLE

In this section we illustrate the importance of cyclo-static data
flow for real-life DSP-applications with a video encoder. This
encoder compresses video data for transmission through a
wireless local area network and has been developed in
collaboration with Prof. Meng's group at Stanford University. A
prototype has been worked out on a C40-based multiprocessor
[4]. Due to the very high sample-rate (0.8 million samples per
second), dynamic scheduling could not be used. The cyclically
changing behaviour of some tasks on the other hand made a

3257

description in synchronous data flow impractical. A way out to
this problem consisted in the cyclo-static data flow approach.
{r]

o —fal—{}
T [

o 7
band
4

1=
-}
1
~£¢
nn-n:—*:-n'—ﬁi

mux

 pva32 |

|
2l

1
£

l
-

i

sub- sub- sub-
V | bend |— bead | bend
— [3

o}t __

Specification of the video encoder algorithm.

Fig. 4.

The basic structure of the encoding algorithm is given in fig. 4.
The inputs to the system are the luminance (Y) and two
chrominance components (U,V) of the video stream. The
chrominance components were subsampled by a factor 2 in both
spatial dimensions before being send to the encoder. (Not on the
figure.) On each component, a subband decomposition is
performed. The luminance component is decomposed into 13
bands of which 2 are zeroed out. The decomposition of each
chrominance component contains 10 bands of which 7 are thrown
away. For the low-frequency bands, the decomposition is
followed by a scalar quantisation (sq). The higher-bands are
pyramid vector quantised, respectively with vectors of 4 (pvqd)
and 32 (pvq32) input samples. For the latter bands the length of
the rows (originally 80 samples) are first made a multiple of 32
by adding 16 zero elements (gensam/mux) at the end of each row.
To increase the error resiliency, the most-significant bits of the
low frequency bands are repeated (r). Finally, all bands are
combined in one bit-stream that is send to the radio interface.

Fig.5. Cyclo-static representation of mux.

Different cyclo-static tasks can be found in this algorithm. The
two dimensional subsampling, for instance, decimates the
datarate by a factor 4, using an alternation of horizontal and
vertical filters. This filter alternation corresponds to a behaviour
that is cyclo-static over two lines. Also the mux is cyclo-static:
the first 80 invocations it outputs the subband data, the next 16
invocations it transfers the zero elements (fig. 5). Finally the
multiplexer is cyclo-static with a very complicated repetition
pattern whose length corresponds to 64 input lines.

CONCLUSIONS

In this paper we presented the cyclo-static data flow paradigm.
Cyclo-static data flow allows to construct an efficient static
schedule for applications with a cyclically changing behaviour.
We gave both necessary and sufficient conditions for such a
schedule to exist and presented a scheduling method as it is im-
plemented in GRAPE-II. Typical for this method is that it does
not require the graph to be transformed to a single-rate equiva-
lent. Finally we also gave a real-life example to show the
importance of a cyclo-static data-flow specification for real-time
prototyping.
REFERENCES

[1] R. Lauwereins, M. Engels and J. A. Peperstraete, “GRAPEII:
A tool for rapid prototyping of multi-rate asynchronous DSP ap-
plications on heterogeneous multiprocessors”, Proc. of the 3rd.
Int. Workshop on Rapid System Prototyping, Research Triangle
Park, North Carolina, USA, pp. 24-17, June 23-25, 1992,

[2] 1. Pino, S. Ha, E. Lee and J. Buck, “Software Synthesis for
DSP Using Ptolemy”, Journal on VLSI Signal Processing, special
issue on Synthesis for DSP, 1993.

[3] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of
Synchronous Data Flow Programs for Digital Signal Processing”,
IEEE Trans. on Comp., Vol. C-36, No. 1, pp. 24-35, Jan. 1987.

[4] M. Engels and T. Meng, “Rapid Prototyping of a Real-Time
Video Encoder”, Proc. of the 5th Int. Workshop on Rapid System
Prototyping, Grenoble, France, pp. 8-15, June 21-23, 1994,

{51 R.M. Karp, R.E. Miller, “Properties of a Model for Parallel
Computations: Determinacy, Termination and Queueing”, SIAM
Journal on Applied Mathematics, Vol. 14, No. 6, pp. 1390-1411,
Nov. 1966.

[6] G. Bilsen, M. Engels, R. Lauwereins, J.A. Peperstraete,
“Static Scheduling of Multi-Rate and Cyclo-Static DSP-Applica-
tions”, VLSI Signal Processing, VII, IEEE Press, New York, pp.
137-146, 1994.

[7] G. Bilsen, P. Wauters, M. Engels, R. Lauwereins, J.A. Peper-
straete, “Development of a static load balancing tool”, Proc. of
the Fourth Workshop on Parallel and Distributed Processing '93,
pp. 179-194, Sofia, Bulgaria, May 4-7, 1993,

ACKNOWLEDGEMENTS

Greet Bilsen is a Research Assistant, Rudy Lauwereins a Senior
Research Associate and Marc Engels a Senior Research Assistant
of the Belgian National Fund for Scientific Research. Part of this
work has been performed when he was at Stanford University in
the wireless video group of Prof. Teresa Meng. His visit was
sponsored by the Fulbright-Heys program, NATO and NFWO.
The work presented in this paper is partially sponsored by the
Belgian Interuniversity Pole of Attraction IUAP-50 and the ES-
PRIT project 6800 Retides. K.U.Leuven-ESAT is a member of
the DSP-Valley ™ network.

3258

