ADEN: AN ENVIRONMENT FOR DIGITAL RECEIVER ASIC DESIGN

Thorsten Grotker, Peter Zepter, Heinrich Meyr

Integrated Systems for Signal Processing
Aachen University of Technology
D-52056 Aachen, Templergraben 55, Germany
e-mail: {groetker,zepter,meyr}@ert.rwth-aachen.de

ABSTRACT

Different levels of abstraction are suited for algorithm de-
sign and hardware architecture development. This paper
presents a tool (ADEN) that provides a link from system
design to VLSI implementation. It generates synchronous
timed descriptions of digital hardware from dynamic data-
flow system level configurations. It allows to make use of op-
timized architectures available for a broad range of commu-
nication system components. These components are kept
in the extensible ComBoz library which provides means to
characterize their data-flow and timing properties. The de-
sign methodology together with the tool operation and the
library concept will be explained. An actual design example
is presented to demonstrate effectiveness of this approach.

1. INTRODUCTION

Different levels of abstraction are suited for algorithm de-
sign and hardware architecture development when targe-
ting towards a digital receiver. Using data-flow semantics
for algorithm design has a major advantage: it does neither
anticipate implementation specific details that do not influ-
ence the algorithmic performance nor implementation rela-
ted signals like clock and reset. Therefore it does not imply
unnecessary restrictions on the implementation. Further-
more the simulation efficiency is higher than that of simula-
tors working on the register transfer level ([1], [2]). However
a state of the art design process for fully synchronous recei-
ver components will include the use of hardware description
languages (HDLs) that offer access to logic synthesis and
(event-driven) simulation -of the synthesized hardware.

A typical design process does not only involve a one way
(top-down) transition from higher to lower levels of abstrac-
tion. To obtain efficient systems, algorithm and architec-
ture have to be optimized jointly ([3]). This involves the
troublesome transition between different description styles
and the use of different tools and libraries.

We developed the ADEN compiler to overcome these dif-
ficulties. ADEN takes a block-diagram used in the data-flow
simulation system COSSAP ' as primary input and gene-
rates a synthesizable VHDL description of a synchronous
clocked system. The implementations for each block of the
data-flow graph can be selected from the ComBoz imple-
mentation library (see figure 1). The component charac-
terization in the ComBoz library provides ADEN enough

L COSSAP is a trademark of Synopsys Inc.

3243

«——w-{ DATA FLOW SYSTEM
SIMULATION (COSSAP)
ComBox

PARAMETERS Data Flow
Library
stom C < SIMULATOR >

Imleiebmmmn Sy: em omplb' COUPLING

AN

VHDL Generator VHDL Structure,
(CG) clock system, reset
VHDL Behavior

& structure

T~/

LOGIC SYNTHESIS

|

: DATAFLOW B

/

VHOL SIMULATOR

Figure 1: ADEN design system overview

information on data-flow and timing properties to take ad-
vantage of complex components like filters, interpolators or
synchronizers when generating a multi-rate dynamic data-
flow system. Related approaches ([4], [5]) do not provide
this functionality. These require the specification of timing
behavior and the configuration of timing and control rela-
ted signals already on the system level and provide a very
rigid translation to a hardware description language.

Section 2 describes the application domain and it’s re-
quirements. Section 3 explains the ComBoxz library concept.
The ADEN design methodology is described in section 4.
Section 5 contains a description of the steps that are per-
formed during system compilation and section 6 presents
an application example.

0-7803-2431-5/95 $4.00 © 1995 IEEE

2. APPLICATION DOMAIN

ADEN has been developed for the design of high to medium
throughput signal processing systems like digital receivers
for communication links. These systems show specific cha-
racteristics that have to be considered in the design process.
o Digital receivers often use multiple data rates and
dynamic data-flow.
e There is only little global control.
¢ The systems are modeled using blocks of relatively
coarse granularity like filters or decoders. Optimized
architectures are well known for a broad range of such
components.
The approach presented here is complementary to state of
the art circuit design methods including the use of high level
synthesis tools[6]. The user can take advantage of existing
optimized hardware blocks and the combination of different
architectural styles.

3. LIBRARY CONCEPT

The ComBoz library maintains two abstraction levels - the
data-flow level and the implementation level. A single data-
flow model (that corresponds to a block in the data-flow
simulation) may have several implementations that share
the same arithmetic-true behavior yet have different timing
properties. The clear separation of the two abstraction le-
vels in the ComBoz is the basis for the design methodology
described in section 4.

3.1. Datafiow Model

Data-flow [7] systems are described as networks of blocks
performing the signal processing and signals connecting the
ports of those blocks. In static data-flow the blocks con-
sume and produce a fixed number of samples at their ports
during each activation. Although a broad range of algo-
rithms can be described with means of static data-flow it
imposes obstacles when modeling complete signal proces-
sing systems. Therefore ADEN makes use of a more general
approach: dynamic data flow[7].

In order to obtain efficient implementations ADEN im-
poses some restrictions on the blocks’ dynamic data-flow
behavior:

o The data rates (the number of samples produced or
consumed per activation; shown in circles at the blocks’
ports in figure 2) have to be specified for each port of
a block.

o The data rates consist of two parts; a symbolic rate
that is either 0 or 1 depending on a control condition
and a static rate. The control condition has to depend
solely on the current value of a so-called control port
(e.g. 1 if (control is odd) else 0).

e A control port has to be a static port with rate 1.
This data flow model allows to specify all configurations in
the considered application domain without imposing unne-
cessary restrictions.

3.2. Timing Model

The target architecture is a fully parallel, synchronous cir-
cuit with central reset and clock generation subsystems.
The blocks exchange data items at fixed time intervals cal-
led iteration interval. It is sufficient to specify the iteration

interval for the port with the highest static rate (this nt-
rinsic iteration interval is 1 in the example shown in figure
2), the other iteration intervals can be derived from it con-
sidering the static data rates. Furthermore the ports may
have different port delays, i.e. the differences in time {mea-
sured in multiples of clock cycles) those ports read/write
the first data item of an activation compared to the port
with the first I/O operation. In figure 2 the port delays
are indicated by numbers in rectangles at the blocks’ ports.
Note that these processing delays have to be fixed, i.e. in-
dependent of the current input values and the states of the
blocks. Data-dependent computation times can be modeled
using dynamic ports.

4. DESIGN METHODOLOGY

The output of the data-flow level design phase is an arith-
metic true description of the algorithm without any imple-
mentation decisions (the separation of data-flow and imple-
mentation level is indicated by a dotted line in figure 1).
The amount of information gathered up to now marks
both; the starting point of the implementation phase and
the reference model for functional verification of the imple-
mentation. The latter one can be achieved using a coupling
between the COSSAP simulator and a VHDL simulator as
shown in figure 1 [8,4].
The user may select implementations from the ComBoz
for some blocks and specify implementation parameters like
the number of pipeline stages. ADEN then reads the cha-
racterization for each implementation from the ComBoz to
obtain all necessary data-flow and timing information to
generate VHDL code for
o block instantiation and interconnection
o hierarchical clock and reset generation sub-
systems

o control signal generation (which includes the genera-
tion of data-valid signals for external dynamic ports)
and

o the instantiation of registers (shimming delays) for

timing synchronization and implementation of algo-
rithmic delays.
VHDL descriptions of the implementations are obtained by
invoking a VHDL generator program (CG) that interfaces

| :iteration interval
(clock cycles between data items)

input =1

H : symbolic rate
]]]]]] ?e.g. 1 if control =1
0 otherwise)
o 1 2 3 a s s'cycle :

control :<_Li>,
Bt ittt S aRRRREEEEl SLEEEE port
| delay
I L ‘ 1
o 1 3 4 s
output datainvalid < '=2,

[t 1 1

T 14 T T

o 1 2 3 4 5 6 1

Figure 2: basic properties of a ComBoz model

3244

with the ComBoz. The following logic synthesis process
may unveil some design bottlenecks in the first iterations.
The consequences may be choosing different implementati-
ons for a specific block from the ComBoz, using different
ADEN compile options (e.g. concerning input times, regi-
ster distribution or reset generation), selecting a different
algorithm for a subsystem or re-designing a specific imple-
mentation.

ADEN is able to generate multirate dynamic data-flow
systems that are correct by construction for timing related
issues using blocks with complex timing behavior. This
automated system compilation makes is possible to test a
broader range of implementation alternatives compared toa
handcrafted system assembly. The users are encouraged to
develop a consistent library of re-usable implementations.
It is advantageous that a system simulation remains pos-
sible throughout all steps of the design process. The clear
mapping of data-flow blocks to hardware keeps the natural
partitioning of the algorithm and simplifies backtracking of
design bottlenecks.

5. SYSTEM COMPILATION

The system compilation process is divided in two steps:
data-flow analysis and timing.

5.1. Data-Flow Analysis

The analysis of the data-flow properties of the entire sy-
stem is necessary to check whether it can be implemented
and to obtain information necessary for timing. Because li-
mited buffers sizes for an infinite execution of the data-flow
graph with an arbitrary input sequence must be achieved,
the graph is required to be strongly consistent. To check
methods similar to those in [7] are applied [9]. If the fol-
lowing additional requirements are fulfilled it is possible to
check for the non-terminatingness of the graph by trying to
execute a complete system iteration with all symbolic rates
set to 1:

o Two control conditions may not be mutually depen-
dent, i.e. the generation of a control signal may not
depend on the value of another control signal and vice
versa.

o A single control item has to be sufficient to execute
a complete iteration of a dynamic subgraph that de-
pends on this control signal.

5.2. Timing
The timing is divided into two steps; first the static timing
that yields the proper (system) iteration interval and the
number of shimming delays on the edges. During static
timing the dynamic ports are considered static. The second
phase is dynamic timing, where gated clocks are introduced
for dynamic subgraphs containing algorithmic states.

The major equation for the static timing describes the
output time tou:(e) of an edge

tout(€) = tin(e) + d,(e) — s(e) * I(e)

where d,(e) is the number of shimming delays on that edge,
s(e) is the number of initial values on that edge and I(e) =
I.(e) * I, is the iteration interval (see figure 3). Initial va-
lues on an edge result from an algorithmic delay operation

or separator. The number of initial values (separator mul-
tiplicity) is indicated by the number inside the diamond in
figure 3. The relative iteration interval I,(e) is 2 minimum
value computed from the maximum number of data items
that have to be transmitted within one period of the system
execution. I, is a system-wide multiplicand.

(e,)=0;

1 tout

. _clock switched off |
e}

alld data kem
ot output v

:
H
2, 3 4 5 6. 7 8 9 18 11 12 13 14

01
Nznunm

Figure 3: timing of a dynamic subgraph

The timing problem for static data rates can be solved
by applying a procedure from [10].

ADEN has to prevent register loading during phases where
no valid input is available for those blocks and edges within
dynamic subgraphs that contain algorithmic states. Two
facts complicate this task:

o We cannot directly access internal registers of a Com-
Boz block but have to disable register loading for the
complete block.

e Some separator bearing arcs may not contain
enough registers to keep all initial values (since the
appropriate timing delay of s(e) * I(e) clock cycles
may be partially realized by pipelined architectures
in the same branch; see figure 3).

A set of sufficient conditions and a clustering scheme could
be developed, which allows to find subgraphs where all re-
gister operations can be disabled jointly (indicated by the
dotted line in figure 3). The implementation is based either
on gated clocks or load-enable registers. If no proper clu-
stering can be found the user must either specify the blocks
using finer granularity or use an implementation with dif-
ferent timing properties. For dynamic subsystems where
either all data items are read from system inputs or written
to system outputs the clustering does not become necessary.

After performing the timing, ADEN checks that all blocks
are working with their intrinsic iteration interval (or at least
with a multiple of it in the case of blocks that do not main-
tain an algorithmic state). Finally ADEN generates the
VHDL code (see figure 1).

6. APPLICATION EXAMPLE

ADEN has been used for the design of a DMSK transceiver
for packet-based mobile communication networks shown in
figure 4. It consists of the following principle processing
steps [11]: after a digital baseband conversion followed by
a rectangular to phase conversion and the computation of
the differential phase, the timing and frequency offsets are
estimated jointly. The frequency correction is followed by
an interpolation of the phase samples to provide 8 values

3245

oATA

1
7

TAANSMIT FLAG

— data rate: 142T), 1 data item per period
———e data rate: 17T, 2 data ilems per period
m——- daterate: 4T, 8 dats ilems per period
- date rate: &7, 16 data items per paviod
e

word length

Mo
Flaa

Figure 4: DMSK transceiver designed with ADEN

per symbol, one of which is selected based on the estima-
ted time offset. The output is fed into the frame detector
and the BCH codec. The blockdiagram shows that the sy-
stem uses multiple data rates; the necessary control flow
can be modeled using static and dynamic data flow. The
required data rate of 2.5MBit/s together with the eightfold
oversampling at the input leads to a minimum clock fre-
quency of 20MHz. The resulting processing power is about
1.6 GigaOps/Second.

The implementation phase started with blockdiagram
consisting of more than 600 primitive (i.e. non-hierarchical)
blocks. A first prototype of the implementation could be ge-
nerated by using ADEN to assemble a synthesizable VHDL
description of the complete transceiver. Cost intensive parts
could be easily identified. Apart from selecting different
implementations for primitive blocks (e.g. different vari-
ants for rectangular to phase conversion) and using diffe-
rent ADEN compile options the quality of the design could
be strongly improved by

o exploiting algorithmic trade-offs (e.g. smaller word-
lengthes or integration intervals), which made new
simulations on the data-flow level (COSSAP) neces-
sary to obtain measures of the impact on bit- and
packet-error rates and

¢ replacing implementations of hierarchical blocks (e.g.
the frame detector and the BCH codec) with optimi-
zed architectures, which were then inserted into the
ComBoxz for future reuse. This procedure reduced the
number of blocks in the final implementation to 419
while the data-flow graph remained unchanged.

The possibility to perform such optimizations within a single
design environment turned out to be crucial for obtaining
high-quality results in time.

The design of the complete transceiver (starting from a
fully specified data-flow block-diagram) consumed 3 person-
months, which includes the exploration of algorithmic trade-
offs as mentioned above. The automated VHDL generation,
which allowed to reuse all of the information contained in
the blockdiagram (the final implementation still contained
more than 400 primitive blocks) and freed the designer from
error-prone tasks like controller generation, led to a remar-
kable speedup in the design process. Logic synthesis using a

1 CMOS library [12] resulted in a circuit with 3, 795mm?
core area (16.000 equivalent gates).

7. SUMMARY

We presented a tool for generating synchronous timed de-
scriptions of digital receivers from dynamic data-flow sy-
stem level configurations. It allows to make use of optimized
architectures available for a broad range of communication
system components. These architectures will be kept in the
ComBogz library which provides means to characterize their
data-flow and timing properties. To provide maximum fle-
xibility the approach is based on a strict separation between
data-flow and implementation level. ADEN has proved ef-
fectiveness during the design of a DMSK transceiver for
mobile communication networks.

8. REFERENCES

{1] G.Jennings, “A case against event driven simulation of
digital system design,” in The 24th Annual Simulation
Symposium (A. H. Rutan, ed.), (Los Alamitos, Cali-
fornia), pp. 170-176, IEEE Computer Society Press,
April 1991.

[2] P. Zepter and K. ten Hagen, “Using VHDL with stream
driven simulators for digital signal processing applica-
tions,” in EURO-VHDL’91 Proceedings, (Stockholm,
Sweden), pp. 196-203, September 8-11 1991.

[3] O. J. Joeressen, G. Schneider, and H. Meyr, “Sy-

stematic Design Optimization of a Competitive Soft-

Concatenated Decoding System,” in VLSI Signal Pro-

cessing VI (L. D. J. Eggermont, P. Dewilde, E. De-

prettere, and J. van Meerbergen, eds.), pp. 105-113,

IEEE, 1993.

Synopsys, Inc., 700 E. Middlefield Rd., Mountain

View, CA 94043, USA, COSSAP User’s Manual: Sy-

stem Architecture.

[5] P. Scheidt, “The DSP design link with Comdisco,”
Synopsys Methodology Notes, vol. 2, pp. 245-264, Fe-
bruary 1992.

[6] Synopsys Inc., 700 E. Middlefield Rd., Mountain View,
CA 94043, USA, Behavioral Compiler User Guide.

[7] E. A. Lee, “Consistency in dataflow graphs,” IEEE
Transactions on Parallel and Distributed Systems,
vol. 2, pp. 223-235, April 1991.

[8] P. Zepter, “Kopplung eines VHDL Simulators an ei-
nen Simulator fiir Signalverarbeitungsalgorithmen,” in
GME Fachberichte 11 Mikroelekironik (D. Seitzer, ed.),
pp. 127-132, VDE Verlag, March 1993. in german.

[9] P. Zepter and T. Grotker, “Generating synchronous ti-
med descriptions of digital receivers from dynamic data
flow system level configurations,” in Proc. of European
Design And Test Conference, February 1994.

[10] H. V. Jagadisch and T. Kailath, “Obtaining schedules
for digital systems,” JEEE Trans. on Signal Processing,
vol. 39, pp. 2296-2316, Oct. 1991.

[11] U. Lambrette and H. Meyr, “A Digital Feedforward
DMSK Receiver for Packet-Based Mobile Radio,” in
Proceedings of the IEEE International Conference on
Vehicular Technology, 1994.

[12] ES2 European Silicon Structures, “ES2 Asic Design
Guidelines,” 1992.

[4

—_—

3246

