NON-PREEMPTIVE REAL-TIME SCHEDULING OF DATAFLOW SYSTEMS

Thomas M. Parks and Edward A. Lee

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley CA 94720
{parks,eal}@EECS Berkeley. EDU

ABSTRACT

Real-time signal processing applications can be described
naturally with dataflow graphs. The systems we consider
have a mix of real-time and non-real-time processing, where
independent dataflow graphs represent tasks and individual
dataflow actors are subtasks. Rate-monotonic scheduling is
optimal for fixed-priority, preemptive scheduling of periodic
tasks. Priority inheritance protocols extend rate-monotonic
scheduling theory to include tasks that contend for exclusive
access to shared resources. We show that non-preemptive
rate-monotonic scheduling can be viewed as preemptive
scheduling where the processor is explicitly considered a
shared resource. We propose a dynamic, real-time execu-
tion model inspired by multithreaded dataflow architectures.

1. INTRODUCTION

Dataflow is a natural model for describing signal processing
systems. Itis a graphical model of computation where nodes
represent computational actors and data tokens flow along
the arcs between them, Parallelism is exposed because only
a partial order on the actor firings is imposed by the data
precedences of the graph topology. Synchronous dataflow
(SDF)[1], where each actor consumes and produces a fixed
number of tokens on each arc, is especially convenient for
describing multirate systems. Because the number of tokens
transferred in one firing of an actor is constant, a periodic
schedule can be computed statically. For example, the prob-
lem of converting from the compact disc (CD) sampling rate
of 44.1 kHz to the digital audio tape (DAT) rate of 43 kHz
in multiple stages[2] is easy to express with the SDF model.

However, if the CD and DAT have independent clocks
then the system must be described as independent tasks (each

Figure 1: Sample rate conversion from 44.1 kHz to 48 kHz
with independent clocks.

3235

represented by a separate SDF graph) that communicate
through some sort of sample-and-hold mechanism that does
not require synchronization, as shown in figure 1. In this
example, the first task contains the CD interface and two
rate conversion stages. The first stage is implemented with
a polyphase FIR filter that consumes 1 token and produces
2, raising the sampling rate from 44.1 kHz to 88.2 kHz. The
next stage consumes 3 tokens and produces 4, raising the
sampling rate to 117.6 kHz. The sample-and-hold interface
to the second task may duplicate or drop samples depending
on whether the sampling clock for the DAT is slightly faster
or slower than 4§ kHz. The discontinuities introduced by this
resampling operation are smoothed out by the anti-aliasing
filters of the succeeding rate conversion stages.

Because the relative rates of the clocks in this exampie
are not known exactly, it is impossible to staticaily determine
a valid execution order for the entire system; dynamic, run-
time scheduling is required. Signal processing systems that
have a mix of periodic, real-time tasks and non-real-time user
interface tasks can be described with multiple independent
SDF graphs[3], where each dataflow graph is a task and the
individual actors in the graph are subtasks that cannot be
preempted.

If there is only one task, or if all the tasks are periodic
with known relative periods and known execution times,
then static scheduling can be used to avoid the expense of
dynamic, run-time scheduling. The problem of sequencing a
set of tasks with execution times, release times and deadlines
on a single processor is NP-compete[4]. There is a large
body of literature in the operations research community that
deals with this and similar problems. A review of static
real-time scheduling techniques is beyond the scope of this
paper.

Dataflow schedulers commonly ignore timing con-
straints. Multi-processor schedulers simply attempt to min-
imize the duration of one schedule period, which may be ad-
equate for statically scheduled, periodic, real-time systems
that do not have strict latency constraints. In a uniprocessor
system no such optimization is possible: there is a fixed
amount of work to be done and only one processor to do
it. But a scheduler could use timing constraints to choose
among the execution orders allowed by the data precedence
constraints.

0-7803-2431-5/95 $4.00 © 1995 |IEEE

Real-time systems commonly use prioritized, preemp-
tive scheduling. Fixed priorities can simplify the implemen-
tation of the run-time scheduler and allow predictable, grace-
ful degradation in overload situations: low priority tasks are
the first to miss their deadlines. The rate-monotonic prior-
ity assignment(5, 6] is an optimal fixed-priority scheme for
independent, periodic real-time tasks. Priority inheritance
protocols[7] extend rate-monotonic scheduling theory to pe-
riodic tasks that are not independent, but must contend for
exclusive access to shared resources.

In this paper we apply these results from preemptive
scheduling theory to non-preemptive scheduling. The ad-
vantages of non-preemptive scheduling are clear. When
arbitrary preemption is allowed, large amounts of processor
state, possibly including the entire stack, must be saved and
restored when one task is suspended and another is resumed.
By restricting suspension points to the boundaries between
subtasks, the amount of state that must be saved can be
reduced significantly.

We propose a run-time scheduler that is derived from
a multithreaded dataflow architecture, the threaded abstract
machine (TAM)[8]. Early dataflow architectures provided
hardware support for fine-grain synchronization where indi-
vidual machine instructions would be dynamically executed
when their operands became available. Because such fine-
grain synchronization proved to be a bottleneck, dataflow
machines have evolved to support coarse-grain synchroniza-
tion for threads of sequential instructions. We extend TAM
to support static schedules, task suspension, and priorities
so that it can be used for real-time systems.

2. RATE-MONOTONIC SCHEDULING

In their landmark paper [5], Liu and Layland address the
problem of prioritized, preemptive scheduling for a set of
independent, periodic real-time tasks. Each task is charac-
terized by a period, T; and an execution time C;. Tasks
are executed repeatedly and each invocation of a task must
complete before the beginning of the next period. Liu and
Layland prove that the rate-monotonic priority assignment,
where tasks with a higher rate (shorter period) receive a
higher priority, is optimal among all fixed-priority schemes
in the following sense:

Theorem 1 [5] If a feasible priority assignment exists for
some task set, the rate-monotonic priority assignment is
feasible for that task set.

A feasible priority assignment guarantees that each invo-
cation of a task completes execution before its deadline at
the beginning of the next period. A set of N tasks can be

scheduled using rate-monotonic priorities if and only if[6}:

Vi,1<i< N min —q—’—{lﬂlgl
(k,DER; = Ty | T;

Notice that only the periods T;, but not the execution
times C;, are needed for priority assignment. The execution
times C; are only needed to prove feasibility. Because the
rate-monotonic priority assignment is optimal, all deadlines
will be met if possible even if the execution times C; are not
known precisely. Because priorities are fixed, the system
exhibits graceful degradation: lower priority tasks are the
first to miss their deadlines in an overload situation. Non-
real-time tasks can be included in the system by assigning
them priorities lower than all the real-time tasks.

3. PRIORITY INHERITANCE PROTOCOLS

In [7] Sha, Rajkumar and Lehoczky address the problem
of prioritized, preemptive scheduling for a set of periodic
real-time tasks that interact through shared resources. Their
motivation is to minimize the effects of priority inversion
where a high priority task can be blocked by a lower priority
task for an indefinite period of time. This can happen when
a low priority task that holds a lock on a shared resource is
preempted by one or more medium priority tasks. The high
priority task cannot run until the low priority task resumes
and releases its lock.

In addition to a period T; and execution time C;, each
task is characterized by a worst-case blocking time B;. A
set of N tasks is schedulable using priority inheritance if
(71

i-1

L 1<i< N i
Vi, 1<i< (k%?ﬁ.;

+om <1

< [
; Ty T —

T | 70

Ci | Bi
T

4. NON-PREEMPTIVE RATE-MONOTONIC
SCHEDULING

The results from priority inheritance protocols can be
used to determine the processor utilization bound for non-
preemptive scheduling when the processor is considered as a
shared resource. A task acquires and releases the processor
for the execution of each subtask. If a higher priority task
isready at the completion of a subtask, the current task will
suspend itself. Otherwise it will continue with the next sub-
task. The worst case blocking time for a task is simply the
maximum execution time over all subtasks of lower priority
tasks.

B; = max
(7,k)ES:

3236

where C; ; is the execution time of the &** subtask of the
j*h task and S; = {(j,k)|i+1<j < N,1 <k <N}
with N; being the number of subtasks in the j** task.

If there is a non-zero context-switch cost, A, then:

B; =2A+ max Cj:
(7,k)€S;

A higher priority task may become ready just after the de-
cision has been made to activate a different subtask. There
is the overhead of switching to that subtask, the execution
time of that subtask, and the overhead of switching to the
higher priority task before it is allowed to run.

Other work on non-preemptive scheduling[9, 10] lacks
the notion of a subtask: once a task begins execution it can-
not be suspended and must run to completion. Moitra[11]
proposes a scheduling technique voluntary preemption that
does allow a task to suspend before completion, but his

bound
N

C; n2

2T 5132

is more pessimistic than the one presented here. A different
approach to non-preemptive rate-monotonic scheduling was
taken in[12]. They addressed the problem of scheduling
periodic tasks where the timing is derived from separate
hardware clocks, such as the example in figure 1. They use
rate-monotonic priorities to construct a set of 21 static
schedules, where N is the number of tasks, then switch
among the schedules at run-time. The complexity of this
approach increases exponentially as the number of tasks
increases.

5. MULTITHREADED DATAFLOW
ARCHITECTURES

Early dataflow architectures executed dataflow graphs di-
rectly, where individual machine instructions were dynami-
cally executed when their operands became available. Such
machines could not make effective use of pipelines and
caches, which have been used very successfully in sequen-
tial, von Neumann machines. Thus dataflow machines have
evolved to support coarse-grain synchronization for multiple
threads of sequential instructions[13].

6. A REAL-TIME THREADED ABSTRACT
MACHINE

The threaded abstract machine (TAM)[8] was developed for
massively parallel architectures where the goal is to keep
processor nodes busy and tolerate long-latency synchro-
nization and communication operations. Enabled tasks are
maintained on a ready queue. The currently active task on
a processor has a continuation vector that holds instruction

enabled threads
(sorted by priority)

current
thread

l’\ m:ru\tal suspended threads
| A
] \‘ 3
!
= 30
B e
\ =
W/

presmption

vector

Figure 2: A real-time threaded abstract machine.

pointers for enabled subtasks. An activation frame holds lo-
cal variables that are shared by the subtasks. When a subtask
runs, it can enable another subtask by placing its instruction
pointer in the continuation vector. In order to maximize
locality and take advantage of caches, tasks continue to run
until the continuation vector is empty.

We propose several modifications to this execution
model to better support real-time scheduling. Figure2 shows
a real-time execution model that is an extension of TAM.
Static schedules are allowed in place of the continuation
vector. This avoids the overhead of dynamically generating
instruction pointers to enable subtasks. The static schedule
is cyclicly repeated for periodic tasks. Priorities are assigned
to tasks, and the ready queue is sorted by priority. Tasks are
allowed to voluntarily suspend and give up control of the
processor before completion.

When a high-priority task becomes enabled, a suspen-
sion subtask (X) is spliced into the schedule of the currently
executing task, and the displaced subtask is stored in a tem-
porary location (T). This is similar to the insertion of a break
point. When it executes, the suspension subtask restores the
the displaced subtask to its original position in the schedule,
saves whatever state is necessary, and transfers control to
the highest priority ready task, which is waiting at the head
of the ready queue.

Each independent datafiow graph becomes a real-time
task. The sequence of actor firings for a task is computed
statically. The tasks are scheduled using the non-preemptive
rate-monotonic algorithm described in section 4. This ex-
ecution model could be implemented in software as with
TAM, or in hardware as with «T[14] (pronounced start)
which is essentially a hardware implementation of TAM.

3237

7. CONCLUSION

We have presented sufficient conditions for the existence of a
feasible dynamic, non-preemptive rate-monotonic schedule
for a set of independent, periodic real-time tasks. We also
proposed an efficient dynamic, real-time execution model
derived from a multithreaded dataflow architecture.

Preemptive rate-monotonic scheduling is optimal, and
in the future we plan to investigate the optimality of non-
preemptive rate-monotonic scheduling. We plan to extend
our scheduling methods to allow for more general timing
constraints and for precedence constraints among tasks.

We will also explore different system representations,
such as cyclo-static dataflow[15] and process networks[16].
Cyclo-static dataflow is a generalization of synchronous
dataflow that can alleviate the problem where actors with
long execution times destroy the feasibility of a non-
preemptive, real-time schedule. Having multiple phases
of execution, some of which are pure computation with no
token consumption or production, reduces blocking times by
increasing the number of possible suspension points. Clus-
tering techniques to combine multiple dataflow actors into a
single subtask will be explored to solve the opposite prob-
lem: increasing the grain size of a fine-grain system to
reduce the number of possible suspension points. This can
simplify scheduling and reduce overhead. The combina-
tion of multi-phase execution and clustering will allow us
to adjust the granularity of the graph and trade off between
blocking times and scheduling overhead.

8. ACKNOWLEDGEMENTS

This work is part of the Ptolemy project which is supported
by the Advanced Research Projects Agency and the U.S.
Air Force (under the RASSP program, contract F33615-
93-C-1317), Semiconductor Research Corporation (project
95-DC-324), National Science Foundation (MIP-9201605),
Office of Naval Research (viaNaval Research Laboratories),
the State of California MICRO program, and the following
companies: Bell Northern Research, Dolby, Hitachi, Mentor
Graphics, Mitsubishi, NEC, Pacific Bell, Philips, Rockwell,
Sony, and Synopsys.

9. REFERENCES

[1] Edward Ashford Lee and David G. Messerschmitt. Static
scheduling of synchronous data flow programs for digital
signal processing. IEEE Transactions on Computers, C-
36(1):24-35, January 1987.

[2] Ronald E. Crochiere and Lawrence R. Rabiner. Multirate
Digital Signal Processing. Prentice-Hall Signal Processing
Series. Prentice-Hall, Englewood Cliffs, New Jersey, 1983.

[3] José Luis Pino, Thomas M. Parks, and Edward A. Lee. Map-
ping multiple independent synchronous datafiow graphs onto

[4]

[5

—

(6]

7

(8]

[9}

[10]

f11]

[12]

(13]

[14]

[15]

(16]

3238

heterogeneous multiprocessors. In Asilomar Conference on
Signals, Systems and Computers, 1994,

Michael R. Garey and David S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman and Company, New York, 1979.

C.L.Liu and James W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. Journal
of the ACM, 20(1):46-61, January 1973.

1. P. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: Exact characterization and average
casebehavior. In [EEE Real-Time Systems Symposium, pages
166-171, December 1989.

Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Pri-
ority inheritance protocols: An approach to real-time syn-
chronization. IEEE Transactionson Computers,39(9):1175-
1185, September 1990.

David E. Culler, Seth Copen Goldstein, Klaus Erik Schauser,
and Thorsten von Eicken. Tam — a compiler controlied
threaded abstract machine. Journal of Parallel and Dis
tributed Computing, 18(3):347-370, July 1993.

Xiaoping Yuan and Ashok K. Agrawala. A decomposition
approach to non-preemptive scheduling in hard real-time sys-
tems. In IEEE Real-Time Systems Symposium, pages 240-
248, December 1989.

Kevin Jeffay, Donald F. Stanat, and Charles U. Martel. On
non-preemptive scheduling of periodic and sporadic tasks. In
IEEE Real-Time Systems Symposium, pages 129-139, De-
cember 1991.

A. Moitra. Voluntary preemption: A tool in the design of
hard real-time systems. In Formal Techniques in Real-Time
and Fault-Tolerant Systems, pages 87-106, January 1992.

Ichiro Kuroda and Takao Nishitani. Asynchronousmultirate
system design for programmable DSPs. In IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Process-
ing, volume 5, pages 549-552, San Francisco, March 1992.

Robert A. Iannucci. Parallel Machines: Parallel Machine
Languages: The Emergence of Hybrid Dataflow Computer
Achitectures. Kluwer Academic Publishers, Boston, 1990.

R. S. Nikhil, G. M. Papadopoulos, and Arvind. «T: A mul-
tithreaded massively parallel architecture. In International
Symposium on Computer Architecture, pages 156-167. The
Association for Computer Machinery, May 1992.

Marc Engels, Greet Bilsen, Rudy Lauwereins, and Jean
Peperstraete. Cyclo-static dataflow: Model and implementa-
tion. In Asilomar Conference on Signals, Systems and Com-
puters, 1994,

Edward A. Lee. Dataflow process networks. Memorandum
UCB/ERL M94/53, Electronics Research Laboratory, Uni-
versity of California, Berkeley, July 1994.

