DYNAMIC TRANSFORMATIONS IN OPTIMIZED CODE GENERATION FOR
DIGITAL SIGNAL PROCESSORS

Kin H. Yu
University of Wisconsin - Madison
Department of Electrical and Computer Engineering
jimy @eckert.wisc.edu

ABSTRACT

In this paper we present an approach for performing
dynamic context-dependent transformations (DCDT) to
improve code generation for programmable digital signal
processors. Unlike static optimizations, DCDT can
guarantee to improve the quality of the generated code, at
the expense of longer computational time. For many
embedded DSP applications, hand coding in assembly is
still the only effective approach. We show that our code
generation approach, when combined with DCDT, can yield
code of quality comparable to that of hand-written codes by
DSP experts and many times superior to that generated by a
conventional optimizing compiler.

1. INTRODUCTION

High level languages (HLLs) are attractive to programmers
because they simplify the task of programming. Unlike
assembly codes, HLL programs are readable, maintainable
and portable to other processors. These features contribute
to increase productivity and reduce development cost.

A HLL compiler translates the instructions present in a HLL
program into assembly instructions, more easily understood
by the processor. HLL compilers for programmable digital
signal processors (PDSPs) have existed for several years [1].
Unfortunately, the performance of commercially available
compilers for PDSPs is acceptable only to a few non-critical
applications [2]. For embedded DSP applications with
stringent constraints on execution time and code size,
careful manual coding, typically with several fine-tuning
iterations, is still the only effective approach.

A typical compiler can be viewed as a front end (FE) feed-
ing a back end (BE). The FE translates the input HLL pro-
gram into an intermediate representation (IR). The BE
translates the IR into the output assembly code. The map-
ping of HLL instructions to IR operators is processor inde-
pendent and is well defined using models such as context-
free grammar [3]; many tools exist to automate that task. In
contrast, the mapping of IR operators to assembly instruc-
tions, also known as code generation, is highly machine
dependent and leaves much room for ad hoc approaches.

Even if a BE could generate optimal code for a given IR,
that code may still be inferior to hand-written assembly

3227

code. The reason is simple. Although the IR can uniquely
represent a given sequence of HLL instructions (program),
the latter is not a unique implementation of a desired
algorithm. In fact, there are infinite programs that evaluate a
given expression. For example, (axb) could also be

implemented as [(a+ by — a*-b1/2.

The use of HLLs emphasizes the issue of algorithm
transformation. Unlike assembly languages, HLLs are, in
principle, processor-independent. Without target architec-
ture information, HLL programmers cannot bias the pro-
gram towards certain constructs, as experienced assembly
programmers often do. Hence, it is the responsibility of the
compiler to perform such transformations.

In static transformations the compiler uses static analysis to
determine the merits of a transformation. For instance, the
apparently more complex implementation

[(a+b) —d* - b*1/2 for (ax b) may actually make sense
if the target processor is an analog computer. In such a
machine, there may not be direct hardware support for
muttiplication. On the other hand, addition, subtraction and
division can be easily implemented with resistors and
operational amplifiers, and the exponential characteristics of
certain analog elements can be exploited to implement the
squaring operation. In such an environment, the

transformation (axb) — [(a+ b)2 —a?=b*]/2 is context-
independent, and knowing that, the compiler could simply
replace, at parse time, all instances of (axb) with

[(a+b)? —a® -b%]/2.

In contrast, context-dependent transformations are those
which depend on either the values of the operands or the
contents and status of the available resources such as
registers and memory addresses, at run time. Such
transformations are usually undecidable at parse time. For
example, consider a processor in which subtraction and right
shift take one machine cycle each, while multiplication
takes 4 machine cycles. In normal circumstances,
implementing (ax b) as [(a+ b)? —a* —b?]/2 would not
make sense in such a machine. However, if the partial
results (a+b)%, a® and b? have been evaluated in previous
statements and are still available in appropriate registers, the

code for [(a+ b)2 -a*-b? 1/ 2 could execute in 3 machine
cycles as opposed to 4 machine cycles for (ax b).

0-7803-2431-5/95 $4.00 © 1995 |EEE

In previous papers [4], [5], we presented a novel approach
for optimized code generation for PDSPs called OASIS
(Optimized Allocation, Scheduling and Instruction
Selection). Resuits were encouraging overall. The quality of
the generated code was many times better than that of a
commercially available optimizing compiler and
comparable to that of hand-written assembly code by DSP
experts. In this paper we propose a set of DCDTs that
complement that work.

2. ALGORITHM TRANSFORMATIONS

Algorithm transformation in software compilation is the
process of rewriting a given implementation of an algorithm
(or parts of it) into another implementation, which allows
the generation of more efficient code. For our purposes,
efficient means compact and fast. Twaddell [7] writes “the
long-term trend in optimizations is for the compiler to
effectively rewrite the code however it pleases with the
user’s code representing just and expression of intent.”

In the framework for code generation presented in [4], [5]
the HLL program is first parsed into a directed acyclic graph
(DAG) [3]. Our system makes use of artificial intelligence
techniques (means-ends analysis, hierarchical planning,
expert system and heuristic search) to mimic the reasoning
and planning processes used by human assembly
programmers. Similar to template pattern matching (TPM)
(6], all evaluations are performed at compile-time. Unlike
TPM, however, template costs are dynamically obtained.
This means that a template may have different costs for
different program contexts. Performance evaluation showed
that a prototype code generator targeted for the
TMS3202x/5x PDSP can generate codes of comparable
quality to those written by experienced assembly
programmers and many times superior to those generated by
a commercial optimizing compiler [8]. Nevertheless, the
ability of human assembly programmers to modify certain
parts of the algorithm being coded to suit the target
architecture was not supported. We now present a
methodology for algorithm transformations and describe
how it can be integrated in our system

2.1. Context-Dependent Transformations

In this paper, we extend OASIS’ framework to support
algebraic and boolean transformations. Many such
transformations are performed by conventional optimizing
compilers. In those compilers, however, transformations are
static, context-insensitive. For example, if multiplication
executes much slower than addition in the target processor,
subtree (ax2) could be replaced by subtree (a+a). This
transformation can be done at parse time and is context-
independent. However, if both operations perform in the
same number of cycles, the advantage of such
transformation is unrecognizable at parse-time.

A common approach in those compilers is to parse the IR
before code is generated and to perform transformations
wherever possible, assuming that those transformations will
always benefit code generation. If that assumption proves to
be incorrect, the user must disable specific transformations
and recompile. Such approach has two shortcomings. First,
determining which transformations are responsible for the
resulting inefficiency of the code is not trivial. Second, it
cannot address the issue of a given transformation being
advantageous in certain parts of the program but undesirable
in others. We call the latter dynamic context-dependent
transformations (DCDT).

Another difficulty with DCDT is that the code generator
must decide not only if a certain transformation is worth
performing, but also, in case several alternative
transformations exist, which one to perform.

Our heuristic search framework can be easily extended to
support this issue. Currently, each search node contains a
copy of the remaining DAG to be covered. A pointer called
CurrentNode points to the node in that DAG currently being
covered. If N alternative patterns exist for the node pointed
to by CurrentNode, the search node is replicated N times.
Each replica contains a copy of the DAG, with the sub-DAG
pointed to by CurrentNode replaced by one of the alternative
patterns. A look-ahead heuristic search is then conducted for
each replica and the cheapest among all replicas is preserved
while others are discarded.

2.2. Reducing Search

Table 1 lists the transformations currently implemented in
our prototype. The column Condition in Table 1 conveys
heuristics to minimize the search space. A transformation is
considered only if the listed condition is satisfied. If the
condition is not satisfied, the transformation most likely
yields either less compact or slower code, and hence is
ignored.

For example, in transformation 6, there are two alternatives:
Opl—-(0Op2 +0p3) = (Opl—-0p2)—0p3 and
Opl —(0Op2 + Op3)=> (Opl - Op3)—-Op2. First, before
these transformations can be even considered, the required
condition that the accumulator contains Opl must be
satisfied. Second, if the condition is satisfied, which one of
the two alternative transformations will yield better code
depends on the run-time context. Both alternatives are
evaluated (with K-step look-ahead) together with the
original expression and the cheapest among the three
implementations is retained while the others are discarded.

In another example, transformation 7 also has two possible
alternatives: Opl—(Op2 —O0p3)= (Opl-0Op2)+Op3 and
Opl—(0p2 — Op3) = (Op3 - Op2)+Opl. The content of
the accumulator dictates which alternative (if any) should be

3228

Table 1: Some examples of DCDT performed by
OASIS during instruction selection.

[fransf] Originai Pattern Transtormed Pattern Condition Level
js\ 1
Op2 Opt
op2a op1b 0p1=0 bOp2s=0 1

opt op2 RegP=-Up2 Il ACC = -Up2 '

Op1 =0p2 2

-Op22 Optb 0¢ |a0p1=0 ©Op2=0 <Opl=Op2 1

A Op1#0p2 & .
2 ot off o2 {AegP = -Op2 Il ACC = -Up2)

A NegRes = 1

0p2 Op1

o,
R

ACC =0p2 2

@
(=]
B
=
o
2
-
o
3

-3
h-1
2
g,
®

Opix1 bOp2a1 cOptiiOp2=0 2

Op1=2 Il Op2=2* 2

ACC = Opt 2
a b
2ACC = Opt
5| o o 0p1 bACC .ga 2

O] p3 | o1 o op1 Op3
> b
2ACC = Opt
7] ok o opt ®ACC =0p3 2
0]

0p2 op3 | op1__ O [
xzA+B xz=A+B
8 y=A-B y=x-28 AcC=x 2
x=A-B x=A-8 -
8 y:A+B y=x+2B ACC=x 2

used. The search process then determines if the original or
the transformed expression will yield better code.

2.3. Dynamic Common Subexpression Elimination

Common subexpression elimination (CSE) is a popular
technique applied by many optimizing compilers. In CSE,
the compiler computes the values of expressions that always
yield the same result, saves the result as a temporary value
and uses that value instead of recomputing the expressions
each time it encounters them.

In performing context dependent optimization, we must deal
with three important issues. First, applying transformations
during code generation can lead to what we call dynamic
CSE. For example, consider the code in Example 1.

Example 1:
ShH f=a+(b-c);
S2) g=a—-(b+c)

Static CSE would not detect any common subexpressions.
However, if we apply transformations 5 and 6 from Table 1,
the above code would result in

(SI1Yy f=b+(a-c)

(§2) g=(a-o)-b;
and the common subexpression (a—c) is created. In
OASIS, performing dynamic CSE is a simple matter of
traversing the DAG after each transformation is applied and
merging common-subexpressions as they are encountered.
This leads to the second issue.

Depending on the subexpression, the resource status and the
target architecture, recomputing the expression could be
cheaper than storing and reloading a value from register.
The correct decision, to perform CSE or not, can only be
made after both alternatives are evaluated. OASIS supports
such evaluations through heuristic search.

The first two issues are undetermined at parse time.
Evaluating all possible alternatives during code generation
can help make that decision. The third issue is that of look-
ahead, which must be used to further refine the evaluation.
Let us consider Example 2 bellow.

Example 2:
S f=b+(a-c);
§2) g=a—-(b+c)

Suppose we are processing statement (SI) and that
transformation 5 is applicable, i.e., the accumulator holds
the value of variable b. Indeed, transforming (S/) into

SI1Yy f=a+b-c)
is advantageous because it eliminates the need to store b into
a temporary location and reloading the accumulator with the
value of a to compute (a—c). A naive evaluation function
would opt to transform (SI). However, only by looking
ahead one can see that if transformation 5 is not applied, and
transformation 6 is applied on (S2) instead, the result would
be

(S f=b+(a-o)

($2) g=(a-o)-b;
and performing the dynamic CSE on (a—c) could be
potentially more advantageous, especially if a and ¢ are
complicated subexpressions.

OASIS supports heuristic search with user specified look-
ahead levels.

3. RESULTS

The code generator reported in [4], [5] was extended to
implement the ideas presented in this paper. Table 2
summarizes the results. Along with the size of the generated
code, it also lists the smallest look-ahead factor K necessary
to obtain those results.

3229

Table 2 - Performance of OASIS compared with TI compiler and hand-written assembly code.

OASIS
HLL Program TI Compiler* without DCDT with DCDT Hand-written
instr. (# instr.) K (# instr.) K (# instr.)

xform5 18 9 2 7 4 7
xformé6 18 9 3 7 3 7
xform56 27 14 6 11 6 12
xform4 24 9 2 8 5 8
xform?7 23 10 4 8 6 8
xform47 27 14 : 6 12 6 12

FFT2 63 23 1 21 2 208

FFT4 190 107 3 89 3 77b

The number of instructions excludes assembler directives and routine initialization instructions.
* The T1 compiler is capable of static arithmetic transformations. Results obtained with all optimizations enabled (-02).

2 Results obtained from [9].
b Results obtained from [10].

Without DCDT, the code generated by our prototype is
already much smaller than that obtained from the TI
compiler, but not as small as the hand-written version. The
reason is that when coding in assembly language, the
programmer has access and, indeed, takes advantage of all
kinds of “tricks” (algorithm transformations) that one can
envision. However, with context-dependent transformations
enabled, the prototype generates codes that are at least as
small as their hand-written counterparts, except for FFT4,
where we exceeded the available computational resources
before we reached the limitations of our code generator. In
two cases (xform56 and FFT2) it is even smaller than the
hand-written version. Careful examination of both assembly
versions of xform56 reveled that the prototype took
advantage of dynamic CSE while the programmer missed
that optimization opportunity in the hand-written version.

4. CONCLUSIONS

The experimental results confirm the efficacy of context
dependent transformations. The only drawback is that more
look-ahead levels are required when transformations are
involved. Although our heuristic search formulation
executes in (second order) polynomial time with the
program size, it is exponential with the look-ahead factor.
For time-critical applications, transformations are well
worth the increased computational time.

REFERENCES

[1] D. Shear, “HLL Compilers and DSP Run-Time
Libraries Make DSP-System Programming Easy,”
EDN, vol. 33, no. 13, pp. 69-74, Jun. 23, 1988.

{2] M. Sabatella, “Barking Up The Wrong Tree: Why
Optimizing Compilers Are Still Unable to Match
Assembly Language,” Berkeley, CA:Univ. of California
- Berkeley, report UCB/CSD 88/428, Aug., 1988.

[3] C. N. Fischer and R. J. LeBlanc Jr., Crafting a
Compiler. Menlo Park, CA:Benjamin/Cummings, 1988.

{4] K. H. Yuand Y. H. Hu, “Optimal Code Generation for
Programmable Digital Signal Processors,” in Proc. of
the International Conference on Acoustics, Speech and
Signal Processing, Minneapolis, MN, IEEE, 1993,

[51 K. H. Yu and Y. H. Hu, “Artificial Intelligence in
Scheduling and Instruction Selection for Digital Signal
Processors,” Applied Artificial Intelligence, vol. 8, pp.
377-392, 1994.

[6] A. V. Aho and S. C. Johnson, “Optimal Code
Generation for Expression Trees,” Journal of the ACM,
vol. 23, pp. 488-501, 1976.

{71 W. B. Twaddell, “Optimizations Ignite New Battle in
the Compiler Wars,” Personal Engineering and
Instrumentation News, vol. 10, no. 2, pp. 25-32,
February, 1993.

[8] Texas_Instruments, “TMS320C2x/C5x ANSI C
Compiler,” Texas Instruments, Houston, TX, version
6.40, 1992.

[9] P. Papamichalis and J. So, “Implementation of Fast
Fourier Transform Algorithms with the TMS32020,” in
Digital Signal Processing Applications with the
TMS320 Family, K.-S. Lin, Ed. Englewood Cliffs, NIJ:
Prentice-Hall, 1987, pp. 69-168.

[10] C. S. Burrus and T. W. Parks, DFT/FFT and
Convolution Algorithms Theory and Implementation.
New York, NY: John Wiley & Sons, 1985.

3230

