MEMORY /TIME OPTIMIZATION OF 2-D FILTERS

Nelson Luiz Passos and Edwin Hsing-Mean Sha

Dept. of Computer Science & Engineering
University of Notre Dame
Notre Dame, IN 46556

ABSTRACT

"P'wo-dimensional filters are commonly used in digital
image processing applications. These filters have the
characteristic of processing recursive sets of instruc-
tions requiring high computational speed. In this pa-
per, these sets are modeled as cyclic two-dimensional
data flow graphs, which are also used to represent the
equivalent circuit design. In this new method, such
graphs are submitted to a multi-dimensional retiming
in order to reduce their cycle time. Such a reduction
can achieve a cycle equal to the longest atomic opera-
tion in the filter, by inserting a fixed number of regis-
ters, independent of the size of the problem, into the
circuit paths. Examples, description and the correct-
ness of our algorithm are presented in the paper. .

1. INTRODUCTION

Digital image signal processing applications such as
high definition television (HDTV) and medical imaging
devices are known to require high computing power.
Such computation intensive applications usually de-
pend on time critical sections, consisting of loops of
sequence of operations also called iterations. An im-
portant characteristic of such applications is the multi-
dimensionality of the data submitted as input to multi-
dimensional (MD) filters. The design of application-
specific circuitry solutions for such critical sections is
required to improve the overall computing performance.
A commonly used way to optimize such designs is the
retiming operation. This paper presents a novel algo-
rithm based on MD retiming transformations to ob-
iain a circuit design for any given cycle time greater
than the maximum propagation delay among its atomic
operations, while considering the consequences in the
nietnory requirements.

Retiming was initially proposed by Leiserson-Saxe
[1] focusing on one-dimensional (1-D) problems. By us-
ing this approach the original multi-dimensionality of
the problem must be initially translated into an 1-D

This work was supported in part by ORAU Faculty Enhance-
ment Award under Grant No. 42265, and by the William D.
Mensch, Jr. Fellowship.

3223

X:(Z122) Y@ 1Z2)

Figure 1: (a) MDFG for a simple filter (b) sketch of equiv-
alent digital circuit

environment. As a consequence of this translation, the
achievable performance improvement may be restricted
by the number of delays existing in a cycle. Most of the
research in this area has followed the 1-D approach and
consequently is subject to the same constraints {5, 7].
In this paper, we use the concept of an MD retiming,
introduced in [1, 6], to model the placement of registers
along the circuit data paths, and to restructure the ini-
tial memory elements. Differently from 1-D situation,
the MD method is not constrained by the number of
existing registers in a cycle. A multi-dimensional data
flow graph (MDFG) is used to represent the problem,
and is optimized by our transformation.

In a 2-D problem the two dimensions are generi-
cally referred as z and y. For best understanding, these
denominations are interchanged with row and column
references when appropriate. Let’s examine a simple
example, representing a filter with transfer function

H(Zl, 22) = : : 1 N .
(1—an=n ZM:O g(ny,nz)xz; tuz, 2)
for ny,ny # 0. Figure 1(a) presents the MDFG repre-
senting the problem, while figure 1(b) shows the equiv-
alent digital circuit. The 2-D delay (1, 1) is represented
by a FIFO structure translated into a serial implcmen-
tation of z7! and z;' elements. The delay (0,1) is
represented by z; ! and the delay (1,0) by 2zt The
current cycle time for this design is equivalent to the se-
quential execution of three additions and one multipli-
cation. We use a schedule vector s to indicate the execu-

0-7803-2431-5/95 $4.00 © 1995 |EEE

Figure 2: (a) retimed MDFG (b) optimized circuit design(c)
retimed MDFG, with possible schedule vector (5,3)

tion sequence. For a row-wise computation, s = (0,1),
the z;'! element represents only one delay, which im-
plies that the 1-D retiming technique can not reduce
the initial cycle time due to the constancy on the num-
ber of delays in the cycle C — F — E — D — C.
Using our technique on the MDFG representing the
circuit, we can ignore such a constraint. If we assume
the execution time of one multiplication equal to two
times the execution of one addition, we can produce
an optimized design with cycle time equivalent to the
execution of one multiplication. In this situation, the
final solution shown in figures 2(a) and (b). The queues
have indices p,q,r to indicate a new queue element if
compared to the initial design. All other edges that
were modified received one register only.

It is important to the designer to keep the number
of inserted registers as small as possible. When there is
no technique involved in the optimization process, one
can select such a MD retiming function and sequence
of execution that can introduce large queues depending
on the problem size. This situation can be illustrated
hy choosing the valid schedule vector s = (5,3) and
the valid retiming function r(B) = r(F) = (~1,2) and
r(A) = 7(C) = (—2,4) for the MDFG shown in figure
1. The resulting dependencies would be those shown
in figure 2(c). This design would require 7 queues (one
in each non-zero delay path). The solution obtained
through our algorithm and shown in figure 2(b) has
only 3 queues and four registers. To manage the selec-
tion criteria for the retiming function in an appropriate
way, we explore some properties of the hyperplanes as-
sociated with the schedule vector, in such a way that
all new memory elements to be inserted in the circuit
arc not dependent on the problemn size.

2. BASIC PRINCIPLES

A maulti-dimensional data flow graph (MDFG) G =
(V,E,d,t) is a node-weighted and edge-weighted di-
rected graph, where V is the set of computation nodes,
i.e., the functional elemeunts in the circuit design, E is
the set of dependence edges, equivalent to the circuit
data paths, d is a function representing the MD de-
lay between two nodes, implicitly indicating the stor-
age elements required in the circuit design, and ¢ is
a function representing the computation time of each
node. In figure 1(a), V = {4,B,C,D,E,F}and E =
{el : (A, F),e2 : (B,E),e3: (C,F),ed : (D,A), €5 :
(D,B),e6 : (D,C),eT : (E,D),e8 : (F,E)} where,
d(el) = d(e2) = d(e3) = d(e7) = d(e’) = (0,0),
d(ed) = (0,1), d(cb) = (1,1), and d(e6) = (1,0). The
execution time of each operation is assumed to be t(A4) =
t(B) =t(C) =2, and (D) = {(E) = {(F) = 1.

An iteration is the execution of each node in V ex-
actly once. An iferation space is the region in the MD
discrete cartesian space whose points correspond one-
to-one to the iteration indices. An edge with delay
(0, 0) represents a data dependence within the sare it-
eration. A legal MDFG must have no zero-delay cycle,
i.e., the summation of the delay vectors along any cycle
can not be (0,0).

Vectors are uscd to indicate the sequence of com-
putation. A schedule vector s is the normal vector for
a set of parallel hyperplanes that define the global se-
quence of execution of the iteration space. Nodes in
a same hyperplane will be executed sequentially, ac-
cording a second Jevel of schedule associated with the
hyperplanes. We say that an MDFG G = (V, I, d,1) is
realizable if there exists a schedule vector s for G, i.e.,
s-d >0 for any d € G [3] and it has no zero-delay
cycle. Tn a 2-D iteration space, we say that the sched-
ule vector is orthogonal if it is parallel to one of the
axis representing the row and columu directions. Oth-
erwise, the schedule vector is said to be non-orthogonal,
and requires a non-orthogonal execution sequence.

A row-wise exccution is equivalent to a schedule
vector (0,1) and it implies that delays (1,0) must be
translated into single register delay elements. Delays
of the form (d.z,0) produce queues of size d.z, which
is independent of the number of points in the x- and
y-directions (the problem size). If M is the number of
points in the x-direction, the delays of the form (0, d.y)
are equivalent to queues of size d.y x M. For the gen-
eral case, this size depends on the distance between the
hyperplanes determined by the schedule vector.

Using such concepts, commonly applied to the de-
sign of array processors [3], we generalize the computa-
tion of the distance hetween hyperplanes for each de-
pendence vector d as Ah = s-d where s is the schedule
vector. When Ah = 0, then d indicates either a zero
delay or a delay vector perpendicular to s. In the first

3224

case, d represents a dependence in the same iteration
which is equivalent to a direct data path in the circuit
design. In the second case, d indicates a dependence
Lobween iterations in the same hyperplane, which is
equivalent to a fixed-size queue.

The queue size required by delay vectors not per-
pendicular to the schedule vector is bounded by Ah x
max(number of integer poinis on a hyperplane).
The regularity of the iteration space produces variable
number of points in the hyperplanes when the schedule
vector is non-orthogonal. For example, for a schedule
vector (s.z,s.y) with s.z > 0 and s.y > 0, and an
iteration space M x N, the number of points p in a
hyperplane would be 1 < p < min(|_;M; , L;N;J) + 1.

3. THE MD RETIMING FUNCTION

A MD retiming r is a function from V to Z" that
redistributes the nodes in the original iteration space
produced by the replication of an MDFG G. A new
MDFG G, is created, such that each iteration still
has one execution of each node in G. This transfor-
mation is equivalent to a redistribution of the delay
clements in a circuit. The retiming vector r(u) of a
node u € G represents the offset between the orig-
inal iteration containing u, and the one after retim-
ing. The delay vectors change accordingly to preserve
dependencies, i.e., r(u) represents delay components
pushed into the edges u — v, and subtracted from the
edges w — u, where u,v,w € G. Thereflore, we have

d.(e) = d(e) + r(u) — r(v) for every edge u 2. v and
d.(I) = d(l) for every cycle l € G.

After identifying the different aspects of relating
dependence vectors to memory elements according to
some schedule vector, we must be sure to obtain a legal
MD retiming function. We say that an MD retiming r
is legal if given a realizable MDFG G = (V, E,d,1), r
transforms G into G, such that G, is still realizable.

To find a legal MD retiming is more complex than
the use of traditional retiming on 1-D cases. In those
cases, the positive number of delays after retiming guar-
antee that the retiming is legal. However, for the MD
problem, positive delay vectors are too restrictive since
an MDFG is still realizable even if it has negative de-
lnys. We know that the existence of a linear sched-
ule vector for the execution of the MDFG is the nec-
essary and sufficient condition for its realizability [3].
"T'herefore, the following theorem provides the theoret-
ical foundations to support the selection of the legal
MD retiming function.

Theorem 3.1 Given an MDFG G = (V,E,d, 1), a
schedule vector s for G such that s -d(e) > 0 for any
d(c) # 0, a node u € V which has all incoming edges
with non-zero delay, and an intcger constant k > 1, a

legal MD retiming for G 15 any wvector k x r(u) where
r(u) is orthogonal to s.

The application of such a retiming function trans-
forms the new MDFG in a graph with a new set of
dependence vectors. The equivalent circuit design is
then constructed through a translation process where
the graph nodes are the circuit elements and the delays
are translated into queues (FIFO elements), according
to the chosen schedule vector.

Considering the concepts seen above, in order to
find a legal MD retiming, we begin by solving the in-
equalities s - d(e) > 0 for every e € E, where s is the
unknown. We chocse a retiming function from the hy-
perplane with s as the normal vector. The selected re-
timing function when applied to any node that has all
incoming edges with non-zero delays and at least one
outgoing edge with zero delay is a legal MD retiming
according to theorem 3.1. We now present an algo-
rithm for transforming the MDFG and, consequently,
its equivalent circuit in such a way to produce the de-
sired cycle time. Our algorithm CyclOp (Cycle time
Optimization), inputs the MDFG representing the cir-
cuit and the desired cycle time § as shown below:

Algorithm CyclOp(G = (V. E,4,1),6)
Choose s = (s, sy) such that 5 - d{e) > 0 for any e € E
Te — (—Syy 51)
count — 0
while V # ¢ {
if OUTDEGREE(u) =0, u € V
PUT(u, Queue); REMOVE(u, 1)
while Queue # ¢ {
GET(u, Queue); LEVEL({n) — count
for every PRED(u) {
OUTDEGREE(PRED(1)) — OUTDEGREE(FRED(u)) —1
if t{u) +t(PRED(1)) < § AND OUTDEGREE(PRED(u)) =0
PUT(PRED(u),Queuc)
t(PRED(u)) — t{n) +1(PRED(n)) } }
count++ }
for every u € G
Compute r{u) «— LEVEL{u) XT.
end

The correctncss of the algorithm is shown below:

Theorem 3.2 Given a rcalizable MDFG G = (V, E,d, 1),
equivalent to a circuit design C, and a target cycle time
6 > t(u) for any v € V. The algorithm CyclOp transforms
G to G- in O(|E|) time, s. t. he cycle time of Gr is less
than or equal to § and the inserted delays are equivalenl to a
finite number of registers, independent of the problem size.

4. EXAMPLE

In this section we present the application of onr method to
the IIR section of a 2-D filter design presented in [2]. Tt
consists of a filter represented by the transfer function:

2 2 oL —t =]
Z.:o Z,‘:o I("])‘zl it

) 2 L. - -3
D ine Lo S

11(21, 22) =

3225

X1(Z1,22) Y(Z+,2Z2
—

Figure 3: Example of an IIR section of a two-dimensional
fitter

—»{A8)
@

(0,1 (0,1) (0,1)
® (D—G@)~
@ @ @ o

Figure 4: MDFG of the example filter

Only the IIR section of the filter is nsed in this ex-
ample, since the solution for the FIR section is considered
trivial. The circuit design is shown in fignre 3. We rep-
resent it by its equivalent MDFG shown in figure 4. As-
sume adders take one time unit to execute and multipliers
take two. Let us also assume that the desired cycle time
is two time units. Using algorithm CyclOp, we begin by
finding a possible schedule vector. The selected schedule
is s = (1,1). We proceed by chioosing the MD retiming
function, obtaining r = (—1,1). Nodes labeled A1, A2,
A3, A4, A5, A7, M1, M4, and M8 are assigned to level 0,
nodes M2, M3, M5, M6 and MT to level 1, and finally,
A6 and A8 to level 2. In the next step, we compute the
MD retiming function. The resulting retiming function is:
r(A6) = r(A8) = (—2,2), and r(M2) = r(M3) = r{M5) =
r(M6) = r(MT) = (—1,1). The final TIR section of the
graph and the modified circuit design are shown in figure
5. The critical path was reduced to one multiplication (two
time units) as desired.

5. CONCLUSION

A novel technique for optimizing a 2-I filter circuit design
was presented. The circuit was represented by a MD data
flow graph and it was submitted to an MD retiming method
that we developed. Using a sequence of execution associ-
ated to hyperplanes as in a wavefront approach allows us
to insert single registers in the circuit paths to optimize its
cycle time. Common mistakes that could produce results
requiring new large queues are avoided through the use of
our algorithm. A pre-selected MD retiming function is the

(1.1

X2+ 23) YZ+.Za)

R

t.gu,o) b Awa |

Figure 5: Retimed filter: (a) MDFG (b) circuit design

core of the algorithr. The algorithm is able to achieve
any desired cvcle tinie longer than or equal to the slowest
operation in the circuit.

6. REFERENCES

[1] L.-F. Chao and E. H.-M. Sha, “ Static Scheduling
of Uniform Nested Loops,” Proceedings of Tth Inter-
national Parallel Processing Symposium , Newport
Beach, CA, April, 1993, pp. 1421-1424.

[2] Gnanasekaran, R., “ 2-D Filter Implementation for
Real-Time Signal Processing”. IEEE Transactions on
Circuits and Systems, 1988, vol. 35, n. 5, pp. 587-590.

[3] S. Y. Kung, VLSI Array Processors, Englewood
Cliffs, NJ: Prentice Hall, 1988.

(4] C. E. Leiscrson and J. B. Saxe, “ Retiming Syn-
chronous Circuitry”. Algorithmica, 6, 1991, pp. 5-35.

[5] T.-F. Lee, A. C-JI. Wu, D. D. Gajski, and Y.-L. Lin,
« Performance Optimization of Pipelined Circuils”.
Proc. of the Internalional Conference on Computer
Aided Design, November, 1990, pp. 410-413.

[6] N. L. Passos, L. IL.-M. Sha, and S. C. Bass,
Schedule-Based Multi-Dimensional Retiming”. Pro-
ceedings of 8th In‘ernational Parallel Processing Sym-
posium, 1994, vol 4, pp. 195-199.

[7] C.-Y. Waug and K. K. Parhi, “ High Level DSP Syn-
thesis Using the MARS Design System”. Proc. of the
International Symposium on Circuits and Systems,
1992, pp. 164-167.

3226

