THE MGAP-2: AN ADVANCED, MASSIVELY PARALLEL VLSI SIGNAL
PROCESSOR

Thomas P. Kelliher? Eric S. Gayles!

Robert M. Owens* Mary Jane Irwin*

! Architecture and VLSI CAD Group, Department of Computer Science and Engineering
The Pennsylvania State University, University Park, PA 16802

2Department of Mathematics and Computer Science
Westminster College, New Wilmington, PA 16172

ABSTRACT

The Micro-Grain Array Processor (MGAP) is a family of
two-dimensional, micro-grained array processors. The pro-
cessor cell architecture 1s extremely compact and simple,
ensuring fine grainess, a very high processor density, and
programming flexibility. Flexibility is maintained through
a programmable interconnect which clusters array cells into
larger computational units. In this paper, we will discuss
the design and optimization issues of MGAP-2, both at the
processor array and system levels. Various design strate-
gies and tradeoffs are being investigated at both levels. The
reader will see how lessons learned from building and using
MGAP-1 have been applied in this new design effort. We
also describe our MGAP programming environment and an
application example — the two-dimensional discrete cosine
transform, a powerful image compression tool.

1. INTRODUCTION

The Micro-Grain Array Processor (MGAP) is a family
of two-dimensional, micro-grained VLSI array processors
which maintains both a high degree of flexibility and fine
grainess [1, 2, 3, 4]. The range of problems to which the
MGAP may be applied is large, including signal and image
processing, graph problems, sorting and searching, matrix
computations, astronomy, computational biology, and com-
putational fluid dynamics. Members of the MGAP family
are variegated according to processor cell architecture, size
of the 2-D mesh of processors, and cycle time. Each of the
processor cell architectures is extremely compact and sim-
ple, ensuring fine grainess and a very high processor den-
sity. Ordinarily, fine-grainess and flexibility are mutually
exclusive properties; we achieve flexibility, without sacrific-
ing fine-grainess, with a programmable interconnect which
clusters individual processor cells into larger, more powerful
computational units (word cells) without a loss in perfor-
mance. The array architecture is completely scalable to
larger sizes and decreased cycle times because of the use of
nearest neighbor communication between processor cells.

MGAP-2 is the second of three MGAP systems which
have been planned for implementation. Here is a summary
of all three MGAP generations:

MGAP-1 — Running, 16,384 digit processors DPsg
in 32 1.2 pm CMOS chips. Single 9U x400 mm boar
operating at 25 MHz. Performance of 0.8 teraops.

MGAP-2 — In design, 65,536 DPs in 32 0.8 yum CMOS
chips. Single 9U x400 mm board operating at 50 MHz.
Performance of 6.4 teraops.

MGAP-3 — Planned, 262,144 DPs on one MCM. Sin-
gle board operating at 100 MHz. Performance of 51.2
teraops.

3219

VME Bus
VME 32
Control
vo Two
M Way
emory FIFO
Control
Memory
) T 2se
>
Register/
Transciever
Controller
Scalar Proc.
Addr. Gen.
—
CPA [~

Fig. 1. MGAP-2 block diagram

The platform for the MGAP-1 and MGAP-2 is a SUN-4
style 9Ux400 mm VME board, communicating with the
host SPARC CPU across the VME bus.

The motivation for developing the next generation
MGAP system, MGAP-2, is to provide more DPs with
larger local memories, giving applications more processing
power and reducing the need for communication with the
I/O memories (refer to Figure 1 for the block diagram).
To achieve these goals, we have redesigned the VLSI cus-
tom processor array (CPA) chip and the support subsys-
tems. The CPA redesign takes advantage of more advanced
technology and better design. The redesign of the support
subsystems has been driven by observations of MGAP-1’s
performance and usage, culling away seldom used, expen-
sive features, adding a few features, and optimizing what
remains so that the subsystems are fast, efficient, easy to
program, and flexible.

This paper is organized as follows. In Section 2 we de-
scribe the design and optimization issues of the MGAP-2,
both at the chip level and at the system level. Section 3
briefly describes MGAP development tools and some signal
processing applications. An efhicient algorithm for the 2-D
discrete cosine transform (DCT) is discussed in Section 4.

2. MGAP-2 DESIGN

2.1. Custom Processor Array Design

The CPA is the core of the MGAP system. The MGAP-2’s
CPA chip is a 64 x 32 mesh of fine-grain processors (called
digit pro¢essors). Compare this with the MGAP-1 CPA
chip, which is a 32 x 16 mesh, with one-fourth of the DPs
available in the MGAP-2. Each DP, one of which is il-

0-7803-2431-5/95 $4.00 © 1995 IEEE

Ne L func

L adde_} M
. torage Memory Fusction | __|
Mux
gﬂlﬂl—. Link
o Emt_ Conf] ™ =
West__] |
Link] vax L] Rignt
False___o]
J I] — Function | _J
Mux Easble [~

T
s Rllhnc
Fig. 2. MGAP digit processor

lustrated in Figure 2, has 32 bits of local memory (twice
as much as an MGAP-1 DP). The computational ability of
each DP comes from two 8-to-1 function multiplexers which
serve as three input universal logic modules (ULMs). Each
logic module receives two inputs from the DP’s local mem-
ory and one input from the configuration multiplexer. The
latter input can be a value computed by the cell, by one of
the cell’s nearest neighbors in the previous cycle, or either
of the values 0 or 1. The output of one of the ULMs is
connected to the local RAM. The link register stores the
output of the second ULM. The output of the link register
of each DP is connected to its immediate north, south, east,
and west neighbors. The 32-bit dual-port memory in the
processor is used to store local operands/results and can
support two read operations simultaneously. Every DP ac-
cesses the same location within its own local memory when
global control information is received, both when retrieving
and storing values. Each cell contains a three-bit register
which provides the selector inputs for the configuration mul-
tiplexer. The configuration register is set through global
control statements issued to all DPs. Added flexibility is
achieved by allowing a DP to conditionally configure itself
depending on the output of the right ULM.

From studying the performance of our application pro-
grams, we have concluded that the original 16-bit local
memory of the MGAP-1 DP is insufficient, requiring extra
machine cycles for moving data between the processor array
and I/O memories. Within each MGAP-2 DP is a 32 bit
dual-ported RAM. The memory operates in three phases.
First there is a precharge phase. This is followed by a read
phase, where the bit lines are separately connected to the
output of inverters within two of the cells inside the RAM.
This may cause one or both of the bit lines to fall to 0V.
Finally there is a write phase in which one of the bit lines
is set to 0V; the other is in the high impedance state. The
desired latency for reads is under 2 ns. We used Hspice [6]
to test the DP memory design. Our simulations produced
read times under 2 ns and write times under 3 ns.

The two ULMs in each DP were designed using pass tran-
sistor logic. The schematic is shown in Figure 3. The reader
should note that for any of the eight possible input combi-
nations, the selected input has two paths to the output, one
through a p-network and one through an n-network. This
allows both 5V and 0V to be passed undegraded through
the ULMs.

Global control includes: selector inputs for the configu-
ration multiplexer, inputs for both of the ULMs, control
signals used within all DPs, and address lines to the dual
port RAM. This control information is broadcast to all of
the DPs. Each DP contains an enable register which can
be set through one of the ULMs. As with the configura-
tion register, the enable register can be set conditionally

[
i

il

£

=
| r
5 [

!
—
-
s]
571

[_ﬁ
t4

Fig. 3. Universal Logic Module

based on the output of the right ULM. A DP is active on
any cycle if and only if its enable register is set. There are
three general types of instructions on the MGAP-2: a com-
pute instruction, a configure DP instruction, and an enable
DP instruction. Only those DPs which have their enable
register set will update their current state based on the in-
struction issued. Figure 4 shows the layout for one pair of
DPs. It is 193X x 978). One of the motivations for our
floorplan strategy was that it allowed a pair of DPs to be
mated as shown.

Metal-2 is run vertically over the array to deliver the
ULM minterm inputs to the function multiplexers of each
cell, this is an additional benefit of our floorplan strategy.
Two of the function input bits come from the sense amplifier
and one from the configuration multiplexer. All of these
signals are run in polysilicon horizontally through the cell.
With 1.2 pm technology this did not seem to introduce
significant delays into the design. The ULMs were tested
with their full load and displayed a worst case delay of 4 ns.
All of the transistors in the function multiplexer are 4A.
The total size of a single ULM 1s 80X x TOA.

2.2. System-Level Design

The major system-level improvements are I/O memory or-
ganization, I/O memory/CPA communication, and control
logic. Other than the CPA, system logic is off-the-shelf MSI
and LSI, and programmable PLDs. The MGAP-1 used so-
called ping-pong I/O memories for concurrent CPA I/0.
Removing this feature allowed us to recover a fair amount
of board real estate. The MGAP-1 communication buses
between the I/O memories and CPA were designed to sup-
port what we thought were all the important dataflows.
Hindsight shows that the buses weren’t flexible enough, re-
sulting in the current arrangement of bidirectional [/O in
all four directions (refer to Figure 1).

Using oft-the-shelf parts in MGAP-1 led to control
pipelines with unequal lengths. This complicated the con-
trol model and forced us to insert a small number of no-ops
to synchronize the I/O memory and CPA pipelines. The
MGAP-2 will consolidate much of the control logic into
a few FPGAs, making it possible for us to equalize the
pipeline lengths.

Finally, the MGAP-1 VME slave interface is not opti-
mized for maximum bandwidth. Some applications, such
as image compression/decompression, utilize the MGAP as
a pure pipeline. For this class of applications, the VME in-
terface is a real bottleneck. The MGAP-2 will improve on
VME bandwidth through DMA and block transfers. The
two-way FIFO, which holds four bit planes in each direc-
tion, will also be extremely useful in these pipeline config-
urations.

3. MGAP DEVELOPMENT TOOLS AND DSP
APPLICATIONS

In this section, we briefly discuss our suite of MGAP appli-
cation development tools and highlight some applications.

3220

i
H

Fig. 4. Layout of Two Digit Processors

@ (?)
rccmnt Ay El
// :
N

Xy X3

Digit Cell @

Fig. 5. Four possible word cell configurations: (a) snake; (b)
vertical; (c) horizontal; and (d) local.

Table 1
Basic operation command counts for MGAP-2. Precision,
p, is 16 MRR4 digits.

Operation # Instructions | Ops/Second
Digit shift 8 = 104 * 107
Word shift 3./p+2 =~ 56 % 10°
Comparison 14./p + 33 =~ 8+ 10°
Addition 25 ~ 32 10°
Multiplication | 135p = 376 * 10°

The tools may be broken down into three categories: low-,
middle-, and high-level.

Digit cells are joined together, through programming
their configurations, to form arbitrary precision word cells
(see Figure 5) and arithmetic at the word level is performed
using the maximally redundant radix four (MRR4) repre-
sentation. This representation yields significant parallelism
at the digit level, because many arithmetic operations can
be performed in constant time. We have developed, and
continue to develop, low-level arithmetic library routines
for exploiting digit-level parallelism. Table 1 lists command
counts for several of these fundamental operations. In the
table, p is operand precision.

At the middle-level, we have have a suite of program-
ming tools: graphical user interface, parallelizing compiler,
assembler, linker/loader, simulator, and test and diagnostic
software. The supported high-level programming language,
C++, is a cross between C++ and C. Essentially, C*’s
notion of a shape has been combined with a C++ compiler.
A bit is the only primitive data type needed for the MGAP
array. All other data types are derived from the bit type:
digits are derived from bits, words from digits, and shapes
from words.

Our high-level development efforts center about paral-
lel algorithm design for solving specific problems on the
MGAP. At this level, we can leverage two distinct forms of
parallelism: digit- and word-parallelism. Digit-parallelism

is obtained by using the low-level MRR4 arithmetic rou-
tines, while word-parallelism results from taking advantage
of the MGAP architecture in designing new problem solving
algorithms.

For maximum performance, it is imperative that high-
level algorithms take advantage of the MGAP architecture’s
strengths, such as local communication and fast addition
and subtraction, and avoid its weaknesses. An edge de-
tection algorithm, using the Hough transform, which we
have have developed, completely avoids expensive multi-
plications in favor of cheap additions and subtractions [8].
In cases where complex, expensive operations cannot be
avoided or there is insufficient high-level parallelism, digit-
level parallelism will still provide a significant speedup.
This is illustrated by our one-dimensional wavelet trans-
form algorithm [9]. Some other signal and image processing
applications are discussed in [5, 10, 11].

4. DCT ON THE MGAP-2

The 2-D DCT is a powerful tool for image compression. We
show how an algorithm based upon the so-called small-n al-
gorithms and using the minimum number of multiplications
for the DCT can be mapped onto the MGAP-2. More detail
can be found in [12].

The small-n algorithms efficiently compute DFTs [13]
and can be used, with a small modification, to compute
the discrete Hartley transform (DHT) [14, 15]. The DHT
thus computed can be used to compute a 1-D DCT using
the relationships established in [16]. The 1-D DCT compu-
tation may be expressed as:

DCT(z) = ASC'TPs,

where z is a sequence of length N, P is a permutation ma-
trix, T and S contain elements from {—1,0,1}, C’ is diago-
nal, and A embodies the relationship between the DHT and
DCT.

Using column-row decomposition, the 2-D DCT is com-
puted using:

DCT(X) = (ASC'TP(ASC'TPX)T)T.

Matrices T and P are fixed and can be pre-computed as
T'. Both 7' and S contain elements from {—1,0,1}, so
multiplication is replaced with systolic summation. Matrix
C' is diagonal and we replace matrix multiplication with
an element-by-element scaling after pre-copying each diag-
onal element to the remaining elements on the row. The
multiplication by A involves a butterfly-style routing, two
multiplications, and an addition. Figure 6 illustrates the al-
gorithm on an MGAP sub-array. Numerous instantiations
of the algorithm are processed in parallel on the array.

Time analysis for the MGAP-2 is given in Table 2. The
steps given are for one 1-D pass. The “Total” row is ad-
justed for the 2-D DCT. “Whole image” is the time for a
complete 256 x 256 pixel image. For realtime video process-
ing, the 8 x 8 2-D DCT of 256 x 256 pixel images should be
less than 32.55 us. The MGAP-2 beats this by an order of
magnitude.

3221

Summation Scale Summation
———
x | 7T Y, | s T
2T T
¥T ch Y, ¥T
1 ¥T 2
2
Y, =TX Y, =C'Y, Y, =8Y,
Adjust Transpose & Summ. Scale
A Y;
Y
Y 4
4
c Y
5
T Ys v
[
vy T ,
Y, =AY, Ys =T'Y, Y, =C'Ys
Surumation Adjust & Transpose
T T
A Y.
Yy 7
Y
T
s Y
-—
Y, =SY, Y=ay)T

Fig. 6. DCT dataflow on an MGAP subarray

Table 2
MGAP-2 256 x 256 DCT time analysis

Step 8x8 16 < 16

oad 1mage 0.2 us 0.88 us
Summation 0.35 us 3.65 us
Scaling 0.29 us 1.47 ps
Summation 0.35 us 3.65 us
Adjust 0.63 us 4.48 us
Total 3.44 pus | 25.38 us
Whole image | 3.52 ms 6.4 ms

5. CONCLUSION

The MGAP-2 has four times as many processors and twice
as much local memory as the MGAP-1. The major opti-
mization issues employed in the MGAP-2 CPA are utiliz-
ing advanced VLSI technology, designing a more compact,
higher capacity dual-port local memory, and altering pass-
transistor ULMs and latches. The clock frequency of the
MGAP-2 has been increased from 25 MHz to 50 MHz.

At the system level, the structure of the I/O subsystem
has been streamlined for efficiency without sacrificing pro-
cessor array performance. This streamlining has been ef-
fected by reducing the number of I/O memories from two to
one and simplifying the communication structure between
the array and the I/O memory. The control subsystem has
been optimized to handle the decreased cycle time, it has
been made uniform, and we have worked to make its design
even more flexible than in the MGAP-1. VME bus band-
width will be improved, increasing the performance of pure
pipelined applications.

Of course, the most powerful system imaginable is worth-
less if it cannot be used. To fully utilize the MGAP’s po-
tential, we have implemented, and continue to implement,
a useful set of MGAP support tools. These tools make
the MGAP quite usable. Finally, we have developed sev-
eral useful applications which demonstrate the power and
viability of the MGAP system. We, and others, continue
to create novel, suitable uses for the system. This work
was supported under NSF grants CDA-8914587 and MIP-
9408921.

REFERENCES

[1] M. J. Irwin and R. M. Owens, “A Micro-Grained VLSI
Signal Processor”, In ICASSP-92, pp 641-644, March
1992.

[2] M. J. Irwin and R. M. Owens, “A two-Dimensional,
Distributed Logic Processor”, IEEE Transactions on
Computers, 40(10):1094-1101, October 1991.

[3] R. S. Bajwa, R. M. Owens, and M. J. Irwin,
“Area Time Tradeoffs in Micro-Grain VLSI Array
Architectures”, IEEE Transactions on Computers,
43(10):1121-1128, Oct. 1994.

f4] R. M. Owens, M. J. Irwin, T. P. Kelliher, M. Vish-
wanath, and R. S. Bajwa, “Implementing a Family
of High Performance, Micrograined Architectures”, In
Application Specific Array Processors, August 1992.

[5] R. M. Owens, M. J. Irwin, C. Nagendra, and R. S.
Bajwa, “Computer Vision on the MGAP”, in Proc.
CAMP’93, 1993.

[6] Meta-Software. HSPICE User’s Manual H9001. Camp-
bell, CA, 1990

[7] R. M. Owens, T. P. Kelliher, and M. J. Irwin, “Build-
ing High Performance Signal Processors Cheaply and
Quickly,” in Proc. 1998 IFEE Workshop on VLSI Sig-
nal Processing, Oct. 1993.

[8] C. Nagendra, M. Borah, M. Vishwanath, R. Owens,
and M. J. Irwin, “Edge Detection using Fine-Grain
Parallelism in VLSI,” in Proc. ICASSP ’93, vol. 1,
pp. 401-404, Apr. 1993.

[9] C. Nagendra, M. J. Irwin, and R. Owens, “Digit
Pipelined Discrete Wavelet Transform,” in Proc.
ICASSP ’94, Apr. 1994.

[10] R. Bajwa, R. M. Owens, and M. J. Irwin, “Image Pro-
cessing with the MGAP: A Cost Effective Approach,”
in Proc. IPPS5°93, pp. 439-443, Apr. 1993.

[11] H. N. Kim, M. J. Irwin, R. M. Owens, and C.-M. Wy,
“Dynamic Space Warping Algorithms on Fine-Grain
Array Processors,” in Proc. IPPS’94.

[12] H. N. Kim, M. Borah, R. M. Owens, and M. J. Ir-
win, “2-D Discrete Cosine Transforms on a Fine Grain
Array Processor,” in Proc. 1994 IEEE Workshop on
VLSI Signal Processing.

[13] D. Elliot and K. Rao, “Fast Transforms: Algorithms,
Analyses, Applications,” Academic Press, 1982.

[14] R. Bracewell, “The Hartley Transform,” Oxford Uni-
versity Press, 1986.

[15] C. Chakrabarti and J. J4J4, “Systolic Architectures for
the Computation of the Discrete Hartley and Discrete
Cosine Transforms Based on Prime Factor Decompo-
sition,” IEEE Trans. Comp., vol. 39, pp. 1359-1368,
Nov. 1990.

[16] H. Malvar, “Fast Computation of Discrete Cosine
Transform Through Fast Hartley Transform,” FElec-
tronic Letters, vol. 22, pp. 352-353, Mar. 1986.

{17] T. Fountain, “An Evaluation of Some Chips for Image
Processing,” in L. Uhr, K. Preston, S. Levialdi, and
M. J. B. Duff, editors, Evaluation of Multicomputers
for Image Processing, ch. 4, Academic Press, 1986.

[18] F. A. Gerritsen, “A Comparison of the CLIP IV, DAP,
and MPP Processor-Array Implementations,” in M. J.
B. Duff, editor, Computing Structures for Image Pro-
cessing, ch. 2, Academic Press, 1983.

[19] R. M. Hord, Parallel Supercomputing in SIMD Archi-
tectures, CRC Press, 1990.

3222

