FAST SUBSPACE TRACKING USING
COARSE GRAIN AND FINE GRAIN PARALLELISM

Daniel Rabideau
USAF Rome Laboratory
Griffiss AFB, NY 13441, USA

ABSTRACT

Subspace tracking is an integral part of many high
resolution adaptive array methods. Unfortunately, the
high computational complexity and non-parallel nature
of traditional subspace tracking algorithms have
deterred their use in real-time systems. In this paper,
we discuss parallel mappings of the Fast Subspace
Tracking algorithm. The serial complexity of this
algorithm is already among the lowest { O(Nr) for N

channels and an r dimensional subspace}. In this
paper, we show that even greater reductions in effective
complexity can be achieved by mapping our algorithm
onto multiple processors. Near linear speedup is
obtained on machines spanning the range from fine
grain systolic arrays to coarse grain commercially
available MPPs.

1. INTRODUCTION

Although subspace-based signal processing methods are
heralded for their superior performance, their transition
into real-world systems has been slow because of their
tremendous computational burden. Because of this,
researchers have mounted a two-frontal attack on the
problem. On the one hand, they have posed alternative
matrix factorizations that are capable of providing
(approximate) subspace information [1], [2], [3] at a
lower cost than traditional methods. These algorithms

typically have complexities in the range of O(Nzr),

O(N 2), or O(Nr2) On the other hand, they have used

parallel processing to achieve even greater reductions in
execution time [3], [4].

Previously [5], we introduced a subspace
tracking algorithm called FST which required only
O(Nr) flops per update. In this paper, we will show how
FST can be mapped onto parallel machines with widely
varying characteristics while achieving high efficiency
and near linear speedup. It will be shown that the
algorithm can be partitioned for both coarse and fine
granularity, and thus should be capable of high
performance on virtually all commercially available
multiprocessors. Tests of our mappings are performed
on an Intel Paragon. iPSC/860. iPSC/2 and iWarp.

3211

Allan Steinhardt
MIT Lincoln Laboratory
Lexington, MA 02173, USA

2. PROBLEM STATEMENT AND FST
ALGORITHM SUMMARY

The subspace tracking problem for sensor array
processing can be formulated as follows. Let X denote
the (k—1)x N matrix whose rows contain snapshots
from an N channel array of sensors at time k—1. Let
I’ denote the diagonal damping matrix used to
exponentially window the data. Suppose that the
windowed data matrix is initially factored as:
X=U-R-V”.

where Uis a (k—1)x{k—1) orthonormal marrix, R is
the (k-1)x N block

diag([Rs c, I]) with rxr upper triangular R, and
and V=[Vs : Vn]

contains orthonormal bases for the signal and noise
subspaces. Such a factorization is called a noise-
averaged URV decomposition. Note that U and V, are

diagonal matrix

average noise singular value G

n

not needed by the standard superresolution methods and
thus do not need to be tracked. The problem then
reduces to one of updating R_, V,, and the average

noise power G - as new snapshots arrive.

Suppose at time k we obtain a new snapshot,

x,. The FST algorithm performs the update in nine

‘-
steps. They are as follows:

1) Compute the coefficients of the new snapshot in the
signal subspace.
x,=V7.x,

s S

2) Project x, into the noise subspace:

v, = Xy _Vs'xs
p
B =”xk_Vs "Xs 2

3) Append the coefficients onto R and window:

0-7803-2431-5/95 $4.00 © 1995 |EEE

Also, define:

append —

4) Use plane rotations to perform a QR-like update:
R, =Q-R
where R, is upper triangular.

append

5) Compute an estimate, w, of the smallest singular
vector of R, (use a condition estimation algorithm).

6) Compute a sequence of rotations such that
Q¥ .w=[0 o 1]
Apply these rotations to R, while rotating (Q,) so
that:
R, =Q,R,-Q,
is upper triangular.

7) Choose rotations (Q,,) to zero the super diagonal
elements of column r+1 of R, (causing fill only in the

last row). Then, perform another QR-like update to
return the matrix to upper triangular form, i.e.,
R,=Q..'R,-Q,

8) Accumulate rotations in V:

[Vs ' vn](_[vs . vn]'Ql 'Qla

9) Sphericalize the noise subspace by zeroing the small
super-diagonal entries of column r+1 of R, and

forming a weighted average of the resulting noise
singular values.

The result is again a noise-averaged URV
decomposition of a matrix which is close to the
windowed data matrix. The performance of this
algorithm is quite good when compared to other
subspace tracking algorithms[5]. The complexity of this

algorithm is only O(Nr)+O(r?).

3. PARALLEL MAPPINGS

In developing a parallel mapping of any algorithm, one
must consider the issue of granularity. In a “fine” grain
mapping, many small groups of tasks are individually
assigned to the nodes of the parallel processor. This

allows many independent tasks to execute concurrently,
at the expense of potentially higher communication
costs. In a “coarse” grain mapping, tasks are first
gathered into a few large groups and then these groups
are mapped onto the nodes of the parallel processor.
Such an approach reduces the amount of
communication required, but also may sacrifice some
concurrency.

For a given computer, the choice between
coarse and fine granularity depends on the relative
speed at which data can be communicated between
processors. On most commercial MPPs (e.g. Intel’s
Paragon, and iPSC/860, iPSC/2) communication delays
for small messages are relatively high. Thus, coarse
grain mappings work best. However, some machines
{(e.g. transputer arrays, VLSI systolic arrays, and Intel’s
iWarp) have been designed specifically to implement
communication efficiently and are well suited to fine
grain mappings.

Given that a certain computer operates best on
mappings of a specific granularity, one must also choose
an algorithm that partitions easily at that granularity.
As with computers, algorithms too are often better
suited to one granularity. Below, we consider ways to
partition FST efficiently for both coarse and fine
granularity.

3.1. Coarse Grain FST

Here, we seek a way to partition the FST
algorithm so that large groups of operations may be
performed concurrently, with a minimum of
interprocessor communication. Furthermore, when
interprocessor communication is to be used, we favor a
few large messages rather than many small ones in
order to reduce the cost of startup latency.

With this in mind, let us consider the cost of

FST: O(Nrj+O(r*). The first term arises from

operations performed on the r +1 dimensional subspace
(steps 1, 2, 8), [Vs §vn], whereas the second term

arises from operations on the (r+1)x(r+1) principal

submatrix of R (steps 3 - 7, 9). In typical sensor array
processing applications, N is much greater than r.
Thus, partitioning V across processors will result in a
large reduction in execution time.

Next, observe that the operations involving V
can be expressed as a sequence of column-oriented dot
products, caxpys and rotations. Thus, we may achieve
nearly ideal load balancing by assigning N/p rows of V
(and their associated flops) to each processing element.
Furthermore, since most microprocessor’s FPUs operate
best on unit stride data, the rows assigned to a processor

3212

should be consecutive. This leads to the block-by-row
mapping of V to the processing elements.

The remaining operations (on the smaller R
matrix) are much more tightly coupled and are not well
suited to parallelization on a coarse grain machine.
Instead, these operations are assigned to a separate
“host” processor. Fig. 1 illustrates the coarse grain
mapping of FST.

r+1

proc 1

proc 2

procp

(2

host proc 1 proc 2

I@ @@

Interconnection Network —I

proc p

(b)

Fig. 1. Coarse Grain Mapping of FST.
(a) Partitioning of V. (b) Mapping of Data to Nodes

Fig. 2 shows the measured speedup using this
coarse grain mapping on an Intel iPSC/860 (with
unoptimized C code). Consider Fig. 2a. Comparing the
one processor (host only) and two processor (host +
single node) curves, we see that computations involving
the R matrix have only a small effect on the overall
execution time. Next, as we increase the number of
processors from two to four we divide the operations on
V among three processors. This results in a speedup of
about three for all values of r -- ideal linear speedup.
Next, with eight processors, the operations on V are
partitioned among seven processors leading to a speedup
of close to seven -- nearly linear. Now, as we continue
to increase the number of processors, we start to observe
the end of the linear speedup region. This is because as
r — N/p the host will start to dominate the execution

time. To prevent this degradation in performance, one
must partition R across a small number of processors.
However, in applications such as Space-Time
Processing, N is often much larger than r (e.g. r approx.

equal to JN) so this is not much of a problem for a
reasonable number of processors.

Figs. 3 shows the performance of coarse grain
FST on the Intel Paragon and iPSC/2. Note that the
speedup curves are much alike despite the great
variation in processing speed and I/O bandwidth. This
demonstrates that the speedup and efficiency of our
coarse grain mapping is relatively insensitive to the
compute-to-I/O ratio of the target machine. Thus, it
should map well onto any coarse grain machine.

r<¥yn: >N
25 .

no. processors:

32

KX

=% %288 3838¢E8
Size of Dominant Subspace
(@)

reVn r>vN

no. processors.

Speedup

* 23839 I IRzl
Size of Dominant Subspace
(b)
r<VWN H r>vyN
10
32
9
6
8
7 N
no. processors.. 8 Nt
a 61 XX T T
‘g e . x\‘\‘\“
5 +
o
@ 41
: 4
S ———— B
21 .
1.2
1
L)

4 8 12 16 20 24 28 32 36 40 44 48 32 56 60

Size of Dominant Subspace

©

Fig. 2. Speedup obtained using the coarse grain
mapping of FST on an iPSC/860 hypercube
(a) N =2000. (b) N=1000 (c) N =500

3213

LS VN

no. processors.

12
o .
T 8 % 3T 8 8 2 8 ¥ 8 8 8
= & 3 2 8 2
Size of Dominant Subspace
@
, r<VN r>VN
61 T~
: no. processors: ~.§ _
5+ :
§'4
5s 4
2
1 2
1
0

©2 3832832888338
Size of Dominant Subspace
(b)
Fig. 3. Speedup obtained using coarse grain FST.
(a) Paragon mesh, N = 2000 (b) iPSC/2, N = 500.

3.2. Fine Grain Mapping

A small grain size allows more independent
tasks to execute concurrently on separate processors, at
the expense of greater communication delays. As such,
fine grain mappings are appropriate for machines with
low I/O-to-compute ratios. With regard to matrix-based
signal processing algorithms, a single “fine grain”
might consist of a small number of floating point
operations, e.g., a single plane rotation or multiply-add:

The FST algorithm may be mapped onto a fine-
grain, linear array of r+1 processors by assigning the i
column of R (and V) to the i"" processor. In this way,
the algorithm is implemented as sequences of plane
rotations or CAXPY operations which are pipelined
across the array.

Fig. 4 shows the speedup obtained using a fine
grain mapping on an iWarp system. In this figure, note
that the number of processors increases with the
subspace dimension (i.e., scaled speedup). Thus, ideal
linear speedup would consist of a straight line with
slope one. We observe that speedup is nearly linear and
improves as the problem size increases.

——Nal00
—+— N =250

—=— N =500

0 ——

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Size of Dominant Subspace

(@)
80
50
©
g
g 30
&
20 +
Ns=
10 | 500
—— 1000
0

4 B 12 16 20 24 28 32 36 40 44 48 52 56 60

Size of Dominant Subspace
(b)
Fig. 4. Speedup obtaned using fine grain FST on an
iWarp system. N = 100, 250, 500 and 1000. (p = r+1).

4. SUMMARY

In this paper, we show that (for N >> r) the FST
subspace tracking algorithm maps efficiently onto
parallel processors having widely varying compute-to-
/0 characteristics. Low computational complexity
combined with efficient parallel mappings make FST a
good candidate for implementation in real-time systems.

[1] P. Comon, and G. H. Golub, “Tracking a few
extreme singular values and vectors in signal
processing,” Proc. IEEE, vol. 78, pp. 1327-1343, 1990.
[2] G. W. Stewart, “An updating algorithm for
subspace tracking,” /[EEE Trans. SP, vol. 40, pp. 1535-
1541, 1992.

[3] E. M. Dowling, L. P. Ammann, and R. D. DeGroat,
“A TQR-iteration based adaptive SVD for real time
angle and frequency tracking, ” I[EEE Trans. SP, vol. 42,
pp- 914-926, 1994.

{4] M. Moonen, P. Van Dooren, and J. Vandewalle,
“Updating Singular Value Decompositions. A parallel
implementation,” SPIE Advanced Algorithms and
Archectures for Signal Processing IV, pp. 80-91, 1989.
{51 D. J. Rabideau, and A. O. Steinhardt, “Fast
subspace tracking,” Proc. 7th SP Workshop on SSAP,
June 1994.

3214

