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ABSTRACT

Jacobi method has been used on special-purpose multi-
processor VLSI systems for parallel singular value de-
composition (SVD) of dense matrices, and CORDIC
processors are often used as the basic processing ele-
ments to implement the two-sided rotations, the fun-
damental operations in the Jacobi method. Recently,
generalizations of the original CORDIC algorithm to
multi-dimensional spaces have been used in the SVD of
complex matrices to achieve faster computation speed.
A further speed-up of more than 2 can be gained by
gradually refining the resolution of the CORDIC algo-
rithms used in the Jacobi method.

1. INTRODUCTION

1.1. Real Plane Rotations via CORDIC

According to the CORDIC algorithm [7], a plane rota-
tion of a 2-D real vector [z y]¥ can be decomposed into
a sequence of simple elementary rotations:

(5] = (oo i) 3]
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where the i-th CORDIC elementary rotation Ra(c;)
depends on the control sign a; € {£1}, and on the
parameter t;, which is selected to be equal to a non-
positive power of 2. Hence, neglecting the scaling fac-
tor 1/4/1 +t?, the i-th elementary rotation operat-
ing on [zi—1 ¥i- 1J7 is implemented by two concur-
rent shift-and-add operatlons called a C ORDIC iter-
ation. ([zo w]T = [z ¥IT,[zs w]T = [z’ y1T.) Dur-
ing the CORDIC evaluation mode, «; is selected as
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a; = sign(zi—1¥i—1) in order to force the second vector
component to zero within approximately b-bit accuracy
where b, the number of the decomposed elementary ro-
tations, determines the resolution of the CORDIC al-
gorithm. Recently, the CORDIC algorithm is general-
ized to multi-dimensional spaces [5], and this original
CORDIC algorithm is also called the 2-D CORDIC al-
gorithm.

1.2. Complex Plane Rotations via Quaternion
CORDIC

A complex plane rotation on a 2-D complex vector vz =
[tr+Jrryr + gyr]T can be written as

)= (s )
va+oyr | \ =5 ¢/ yr+u

where ¢,§ denote the complex conjugates of ¢, s re-
spectively, and c¢ + s§ = 1. A 4-D CORDIC algo-
rithm, called quaternion CORDIC algorithm (5], was
proposed to implement the above complex plane rota-
tion by transforming the 2-D complex vector vy into a
4-D real vector vs = [TR Z1 YR ys]T and performing a
sequence of quaternion CORDIC elementary rotations
on v4:
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The i-th quaternion CORDIC iteration depends on three
control signs a;,B;,v € {l,—1} and can be imple-
mented by four concurrent multiple-operand shift- and-
add operations. During the CORDIC evaluation mode,
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the control signs are selected according to
o; = sign(Tri-1 - 2ri-1), Bi = sign(TR,i-1 - YR,i-1),

vi = sign(TRi-1 - Yri-1)

in order to annihilate the last three vector components,
l.e., to zero out the second component of the 2-D com-
plex vector and at the same time force the first one
real.

1.3. Jacobi Method

The Jacobi-like method for the SVD of an m x m matrix
with complex entries iteratively applies suitable two-
sided complex plane rotations to the left-handed and
the right-handed sides of the 2 x 2 complex submatrices
in the input matrix A as

A=A, Ajy1=UjA;Vj, §=0,1,2,--

where the unitary matrices U; and V; are identity ma-
trices embedded with 2 x 2 complex plane rotation ma-
trices along their diagonals. Each step of the Jacobi
method consists of two parts. First, Uj, V; are selected
such that every 2 x 2 submatrix along the diagonal of
A; is diagonalized. Then, each submatrix exchanges
entries with its neighboring submatrices according to
some ordering, say the parallel ordering proposed in
[1]. In (m — 1) Jacobi steps, called a sweep, every off-
diagonal entry is brought into a diagonal submatrix for
annihilation exactly once. An array architecture for
the Jacobi-SVD of 10 x 10 matrices is shown in Figure
1 where each processor P;; performs a sequence of two-
sided rotations on a 2 x 2 submatrix stored within it.

2. JACOBI-SVD WITH CORDIC

It has been shown in [4][5] that the two-sided rotations
may be parallelized through an additive decomposition
of a 2 x 2 complex matrix M into the sum of an even
matrix £ and an odd matrix O,

(2)=(%2)+(% 3)
¢ d —éy € 02 —01

where _
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In the Jacobi method, the complex plane rotations are
applied to both sides of a 2 x 2 complex submatrix
M = E + O. As shown in Section 1.2, the complex
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Figure 1: Systolic array architecture for the Jacobi-
SVD method.

rotations in both sides of E (or O) may be realized
by two quaternion CORDIC operations applied from
the left and from the right to the 4-D real vector cor-
responding to E (or O). In this case, a quaternion
CORDIC elementary rotation on the 4-D vector may
be moved from one side to the other and the two quater-
nion CORDIC elementary rotations may be merged
into another new elementary rotation, called the 4-D
Householder CORDIC rotation [6], with matrix repre-
sentation

A 1
Rel| B )= g
1- 3t12 2015 206;t; 2vit;
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Thus the two-sided rotations to diagonalize a 2-D com-
plex matrix may be realized by a single 4-D House-
holder CORDIC operation, instead of several 2-D
CORDIC operations as required in early work. Com-
pared with the previously proposed Jacobi-SVD based
on the original 2-D CORDIC algorithm [2][8], the above
approach achieves a speed-up rate of 3 to 6 [4].

3. ADAPTIVE JACOBI-SVD

In the CORDIC-based Jacobi-SVD method, the zeros
created by the two-sided rotations at each Jacobi step
are smeared by the subsequent rotations. Thus, the
exact annihilation of matrix entries 1s not necessary
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during the early phase of the computation. In {3], an
approximation rotation scheme for parallel eigenvalue
decomposition (EVD) of real symmetric matrices has
been proposed, in which each 2-D CORDIC operation
contains only one single iteration. The method calls
for several magnitude comparisons at each Jacobi step
and the associated scaling operation creates extra com-
putation overhead. Besides, this Jacobi-EVD method
cannot be easily generalized to the EVD of Hermitian
matrices or the SVD of general complex matrices.

In order to overcome the problems mentioned above,
an adaptive multi-dimensional CORDIC-based Jacobi-
SVD method is proposed which employs CORDIC op-
erations with smaller bit-accuracy (smaller b) to ap-
proximate the two-sided rotations during the first sev-
eral sweeps, and gradually refine the CORDIC resolu-
tion. The bit accuracy of the CORDIC operations is
identical for all 2 x 2 submatrices and remains constant
throughout each sweep. To keep the overall hardware
of the VLSI system as simple as possible, the criterion
to determine the bit accuracy of the CORDIC opera-
tions in each sweep should be simple enough so that no
other complicated arithmetic operations such as multi-
plications, divisions or square-roots are needed.

Let b(*) denote the bit resolution of the 4-D House-
holder CORDIC algorithm in the k-th sweep and b is
the desired accuracy in the final results when the singu-
lar values are found. The adaptive Jacobi-SVD method
increases the CORDIC resolution b(¥) as follows:

o Start with the initial resolution 5(1) = bq.

o After each Jacobi sweep, the resolution is increase
by Ab bits until it reaches the resolution limit b,
i.e., A+t = min(6(¥) + Ab, b).

In other words, the Jacobi-SVD begins with CORDIC
algorithms of smaller resolution (smaller number of it-
erations) and gradually increases CORDIC resolution
from sweep to sweep. The selections of the initial
CORDIC resolution by and the resolution increase Ab
per sweep have slight effects on the convergence rate of
the SVD computations. It is found out experimentally
that by = Ab = 4 is a good choice for complex matrices
of size up to 100 x 100.

4. EXPERIMENTAL RESULTS

Since the convergence rate of the Jacobi-SVD may de-
pend on the distribution of the singular values of the
matrices under test, two types of complex random ma-
trices are considered here. The first type of random ma-
trices have the the real and imaginary parts of the ma-
trix entries uniformly distributed between -1, 1. This

type of random matrices usually have separated singu-
lar values. The second type of random matrices are
generated so that the matrices tend to have multiple
singular values.

Both the nonadaptive and adaptive Jacobi meth-
ods based on the 4-D Householder CORDIC algorithms
are used to compute the SVD of the above two types
of random matrices. The stop criterion of the Jacobi-
SVD algorithms in the experiment was that the sum
of the squares of all the off-diagonal entries was re-
duced to 107!? times the sum of the squares of all
the entries. Figure 2(a)(b) respectively compares the
number of sweeps and CORDIC iterations required for
the SVD of complex matrices using the nonadaptive
Jacobi-SVD approach (denoted by solid lines) in [4]
and the new adaptive Jacobi-SVD approach (denoted
by dashed lines). The unboldfaced lines denote the ex-
periments for the first type of random matrices while
the boldfaced lines denote the results for the second
type of random matrices. v

Although the adaptive Jacobi method calls for
slightly more sweeps, the total number of the CORDIC
iterations required is smaller than that using nonadap-
tive Jacobi method. The speed performance of the
adaptive Jacobi-SVD method is at least twice faster
than our previous approach in [4] which has already
been three to four times faster than the approaches
in [2][8]. It is an interesting observation that the sec-
ond type of random matrices (matrices tending to have
multiple singular values) call for more sweeps than the
first type of random matrices, and thus require more
CORDIC iterations for convergence.

In a systolic-like implementation such as the one
shown in Figure 1, classical matrix dependent termi-
nation criteria for the Jacobi-SVD algorithm are very
expensive. Thus a good strategy is to stop after a pre-
determined number of sweeps, possibly dependent on
the dimension of the matrix. In order for the SVD al-
gorithm to converge for most matrices, the worse case
situation should be considered. From our experiment,
the number of sweeps is selected to be 13 for any ran-
dom matrix of size up to 100. In [1], Brent ef al. sug-
gested to select 10 as the number of sweeps for matrices
of practical size (say, up to 1000) because they consid-
ered only random matrices of the first type. But as
been shown in Figure 2, the second type of random
matrices require more sweeps for convergence. Larger
matrices require larger numbers of sweeps

5. CONCLUSIONS

The recently proposed multi-dimensional CORDIC al-
gorithms have been applied to finding the singular val-
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with entries uniformly distributed between -1 and 1

---- adagtive Jacobi SVD for random matrices
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Figure 2: (a) Number of sweeps and (b) number of
CORDIC iterations required for Jacobi-SVD.

ues of complex matrices based on a Jacobi-like method
in which some sequentiality of two-sided complex ro-
tations is removed by decomposing additively a 2 x 2
complex matrix into the sum of an even and an odd
matrices. The parallelized two-sided rotations, real-
ized by the 4-D Householder CORDIC algorithm, is
at least 3 times faster compared to earlier work based
on the original 2-D CORDIC algorithms. In this paper,
the Jacobi-SVD computation speed is further increased
by a factor of 2 by adaptively refining the accuracy of
the CORDIC algorithms employed in the Jacobi-SVD.
Some experimental results are included to show the su-
periority of the new adaptive Jacobi-SVD method.
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