A COMPLEX ARITHMETIC DIGITAL SIGNAL PROCESSOR
USING CORDIC ROTATORS

S. Freeman and M. O'Donnell
Electrical Engineering and Computer Science Department
and Bioengineering Program
University of Michigan
Ann Arbor, MI 48109

ABSTRACT

A versatile signal processor has been designed that can
perform multiple rotations, multiplications and additions
within one clock cycle. The computational elements of
this processor include four pipelined CORDIC rotators,
two pipelined fast multipliers and two adders. A
combination of register files, SRAM, and ROM provides
on chip storage for coefficients, running sums and
programs. The chip architecture and its applicability to
complex valued signal processing tasks are discussed.

1. INTRODUCTION

Digital signal processors are typically designed for fixed or
floating point real number calculations. Consequently,
complex number operations often suffer a 4:1 throughput
penalty due to the 4 multiplies and 4 adds needed for a
single, full complex multiply accumulate. Many
applications, including real-time baseband filtering in
medical ultrasound color flow Doppler processors, require
complex arithmetic. = Hence, alternate computational
structures are needed to maximize throughput in these
systems. This paper explores an alternate computational
architecture based on a geometric interpretation of
complex multiplication.

Complex multiplication can be viewed either as 4 real
number operations or as a scaling and phase rotation of
one complex number by the magnitude and phase of
another complex number. That is, complex multiplication
can be viewed as a phase rotation followed by scaling of
the resultant vector. Consequently, the efficiency of
complex multiplication may be increased by integrating
vector rotation hardware into a typical digital signal
processor. Moreover, phase sensitive processing, such as
complex correlation, may be easily implemented with
efficient vector rotation structures.

There are several possible methods for efficient vector
rotation. Because of its simplicity, the most commonly
used method is based on the CORDIC (COordinate

3191

Rotation Digital Computer) algorithm. This algorithm can
perform vector rotations along a line, circle, or hyperbola
[1,2,3,45,6,7,8]. Several different monolithic imple-
mentations have been realized using both fixed point and
floating point computations [1,3,4,6,9]. These chips were
developed either as application specific rotator units or as
general-purpose stand-alone processors. This paper
presents a monolithic chip that includes several CORDIC
rotators along with the basic computational elements found
in commercial digital signal processors to create a
powerful yet versatile general-purpose digital signal
Processor.

Section 2 of this paper briefly describes the CORDIC
algorithm and its implementation. The numerous modes
in which the four CORDIC rotators can be used are also
discussed. The following section presents other circuit
elements on the chip, including computational and storage
units, as well and the ways in which these elements are
interconnected. In section 4, examples are presented
illustrating the processor's ability to perform complex
valued arithmetic efficiently. Also discussed here are
possible pipelining and parallelization schemes
maximizing throughput. Section 5 discusses other modes
of operation, including self-test, external test, and single
execution modes.

2. THE CORDIC ALGORITHM

The CORDIC algorithm was proposed by Volder[7] in
1959 as an iterative method to transform rectangular to
polar coordinates by successive circular rotations of a
vector through a fixed set of angles. Others have extended
the algorithm to permit rotations of a vector along a line or
hyperbola [1,2,8]. We have implemented only a circular
rotator, since FFTs and most complex number operations
use only this type of rotation. A circular rotation can be
written as:

I =1 cos(©)-Q, sin(®))]

out

Q,,=Q, cos(©)+], sin(©),

0-7803-2431-5/95 $4.00 © 1995 |IEEE

where © is the angle of rotation, I represents the real part
and Q the imaginary part of a complex signal. Any
arbitrary rotation can be decomposed into a set of smaller
rotations performed iteratively according to the relations:

I,,=Icos(®,)-Q_sin(®) 2
Q,,,;=Q,cos(®)+ sin(G),

where n is the iteration index. Volder noticed that by
choosing tan(©,)=1/2" (therefore © =45,26.5,14,7.12°...)
the rotation operation can be transformed into a series of
simple arithmetic operations, written specifically as:

In+l=kn (In - GnQnZ-n) (3)
Qn+l=kn (Qn + cnIﬂz-n)'

The k, scaling factor is constant for a fixed number of
rotations (iterations) and so can be omitted within each
iteration. These equations are easily implemented with
binary shift and add/subtract circuits. One approach uses
pipelined adders with fixed shifts between them. Another,
(the one we adopted), uses a recursive cell with barrel shift
circuits and adders to iteratively perform the rotations.

The o, in the above equations represents the direction of
each rotation; o,=1 is a positive rotation and ¢,=-1 is a
negative rotation. By varying the direction during each
iteration, a vector is rotated through any arbitrary angle
subject to the quantization of the algorithm[10].
Practically, o, is actually a sign bit, s, which controls the
adder/ subtractor circuits such that s =1 is a positive
rotation and s =0 is a negative rotation.

The CORDIC rotator shown in Figure 1 can be operated in
either angle accumulation or rotation modes. For angle
accumulation, the sign bit (s)) equals the MSB of the
imaginary component. If the Q component is positive
(MSB=0 in 2's complement notation), then a negative
rotation will occur. The effect is to iteratively force the
vector toward the real (I) axis. In rotation mode, the sign
bits are supplied from outside the rotator and perform
some arbitrary rotation through a given angle ©.

S0 Sy

{

90 & Recursive | [&
IN Degree E{ CORDIC |I out

Rs Comy
Mux

Regs

Figure 1. Block diagr';;;‘;f CORDMIﬁé;étator

The specific complex number
processing unit we have
developed is based on a four

M :

aster I

RD

CORDIC rotator structure CORDIC

illustrated in Figure 2. This

structure consists of one master, j
Slave 1

two slaves, and a master/slave
rotator. A master cell can
export its internal sign bit to the

CORDIC

—1

slave rotators. This allows the Master 2/
master rotation to be mirrored Slave2 [
in each of the slave CORDICs. CORDIC
g.lgu.re 2 shows the sign bit Slave 3 *j
istribution scheme among the CORDIC =
CORDIC rotators. This scheme n

allows the processor to perform
a full complex multiply by
decoupling phasor rotation from
magnitude scaling:

(IAlei®A) (IBlei®B) = (1Alei®) (IBlei(©A+©8)) 4)
= |AlB| ei(©A+68)

Figure 2. Sign Bit
Distribution

Here, the master CORDIC rotates its vector toward the real
axis, while the slave mirrors this rotation, thereby
performing the phase shift involved in the complex
multiply. The magnitude multiply is simplified since the
master vector magnitude (i.e. lAl) is available at the I
output and can be used to multiply the I and Q components
of the slave. A full complex multiply using this method
requires one rotation and two multiplies, whereas a normal
complex multiply requires four multiplies and two
additions.

Each CORDIC rotator contains a shift register serving as
local storage for the sign bits. Therefore, every CORDIC
can either be operated independently to rotate through
different angles, or coupled with other CORDICs in many
ways for different tasks. Complex conjugate operations
are performed simply by inverting the desired sign bits.

3. OTHER CIRCUIT ELEMENTS

The four CORDIC cells occupy roughly 1/3 of the
available chip area (section 6); the remainder is other
computational and storage elements which vastly extend
the chip's suitability to DSP applications. Two high-speed,
two-stage multipliers can perform the magnitude multiply
operations following vector rotations, and two adders can
perform running sum calculations. Running sums and
filter coefficients are stored in two separate register files.
One of these has two read ports for updating coefficients
and running sums simultaneously. A 824 byte SRAM

3192

holds 64 microcoded program instructions that can be
executed continuously using simple looping procedures.
Finally, an FFT ROM contains the angle information for
computing up to 32 point FFTs as well as self-test
information for that mode (section 5).

Communication between the various computational and
storage elements was designed to be as flexible as possible

permitting programmable optimization for each
application. FFTs, for instance, use the rotators and
adders, whereas complex filtering requires rotators,

multipliers, and adders, and coordinate transformations
only require rotators. On-chip bus structures, shown in
Figure 3, provide communication between the various
circuit elements.

Io Qo000
Ii h h » Muitl
—’ . N . ™
{ CORDICS -l '—I
NoBA A - Mult2
N b A =_]]
RF1 -~
wniio- 34 Bit
. =P 16,17 bit
ot [<
4 " >
RF2 | 7TTT T
‘\ \:: N 8 '-
N -]
) iy

Figure 3. On-chip bus structures; combinations
of multiplexers and tristate buffers
control bus interconnections.

4. PROGRAMMING AND EXAMPLES

The chip uses a 103 bit microcode instruction during each
clock cycle to explicitly control all bus interfaces and
computational elements within the chip. This allows the
programmer to use all buses and major elements of the
chip to optimize performance. These instructions also
control the 34 input and 34 bi-directional pins on the chip,
as well as regulate their connection to the internal buses
and computational elements.

For efficient programming, the pipelining and paralleliza-
tion features of the various circuit elements must be
exploited. In particular, the following functions can be
performed simultaneously if care is taken to control the
buses properly:

1) Load CORDICs with new data.
2) Rotate four vectors through same or different ©.

3) Multiply rotated vectors by magnitude of filter tap.
4) Add scaled vectors to running sum and output result.

Only these four operations are needed to implement a
complex valued digital filter. Consequently, this chip has a
maximum throughput of one complex filter tap per cycle.
FFTs are calculated using functions 1,2, and 4 to obtain
the same throughput. For longer filters or FFTs, the
throughput drops simply because the running sums have
more terms in them.

5. OTHER MODES

In addition to normal operation, a finite state machine
(FSM) can be executed that loads a program into the on-
chip SRAM and initializes both register files. Another
FSM can reload just the register files, for instance, to
change filter coefficients on the fly. There is also a test-
mode scan chain that can shift known data through all on-
chip registers. This chain is used as part of a self-test
FSM that shifts FFT coefficients through the registers.
After all registers have been scanned, the processor runs
for one cycle, and then shifts the data out of the registers to
compare with known results stored in ROM. If the self
test passes, an "OK" signal is asserted. For applications
that do not completely fit in the on chip SRAM, a "Single
Execution Mode" has been developed that allows a single
instruction to be loaded into the instruction register (two
cycles) and then executed (one cycle). The user can also
stall the chip, where all operations are suspended
indefinitely. This may be useful for processing signals
with non-uniform data rates.

6. CHIP SPECIFICATIONS

The chip was designed and simulated using a Verilog
hardware description language where layout was later
generated by the Epoch silicon compiler from Cascade
Design Automation for a .8um three-metal CMOS process.
The 84 pin chip, whose core is shown in Figure 4, contains
more than 240,000 transistors on a 8.2 x 8.1mm die and is
expected to operate at clock frequencies up to 33MHz.

7. CONCLUSION

A digital integrated circuit has been designed integrating
multiple CORDIC rotators, multipliers, adders, and
storage units into a general-purpose digital signal
processor. This device is well suited to any digital signal
processing application using complex valued arithmetic,
including complex correlation and filtering and FFT
computation.

3193

eExlntar ¥ila

i
Figure 4. Comp

lex number DSP chip core

References:

[1] A.AJ. de Lange, E.F. Deprettere, A. van der Veen, J. Bu,
"Real Time Applications of the FloatinF Point Pipeline
CORDIC Processor in Massive-Parallel Pipelined DSP
Algorithms", Proc. of ICASSP, pp. 1013-16, April 1990.

[2] AM. Desgain, "Fourier Transform Computers Usin,

CORDIC Iterations", IEEE Trans. on Computers, Vol. C-23,
No. 10, pp. 993-1001, Oct, 1974.

[31 M.D. Ercegovac, T. Lang, "Implementation of Fast Angle
Calculation and Rotation Using On-Line CORDIC", Int'l
Symp. on Circuits and Systems, FX 2703-6, June 1988.

[4] G.L. Haviland, A.A. Tuszynski, "A CORDIC Arithmetic
Processor Chip", IEEE Trans. on Computers, Vol. C-29, No.
2, ﬁp. 68-79, February 1980.

[5] Y.H. Hu, "CORDIC-Based VLSI Architectures for Digital
S(isgnal Processing”, IEEE Signal Processing Magazine, pp.
16-35, July 1992.

{61 D. Timmerman, et.al, "A Programmable CORDIC Chip for
Digital Signal Processing Applications”, IEEE J. of Solid-
State Circuits, Vol. 26, No. 9, pp. 1317-21, Sept. 1991.

[711.E. Volder, "The CORDIC Trigonometric Computing
Technique”, IRE Transactions on Electronic Computers, Vol.
EC-8, No. 3, pp. 330-4, Sept. 1959.

[8] J.S. Walther, "A Unified Algorithm for Elementary Func-
tions", Spring Joint Computer Conference, pp. 379-385,1971.

[9] M. O’Donnell, W.E. Engeler, “Correlation-Based Aberration
Correction in the Presence of Inoperable Elements”, [EEE
Trans. on Ultrasonics, Ferroelectrics, and Frequency Control,
Vol. UFFC-39, pp. 700-707, 1992.

[10] Y.H. Hu, "The 5uantization Effects of the CORDIC
Algorithm", IEEE Trans. on Signal Processing, Vol. 40, No.
4, pp. 834-44, April 1992.

3194

