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ABSTRACT

In this paper we consider the algorithm for SVD updating
based on Jacobi rotations. In order to overcome the trade-
off between accuracy and updating rate intrinsic in the orig-
inal algorithm, we propose two schemes which improve the
overall performance when the rate of change of the data is
high. In the “variable rotational rate” scheme, the number
of Jacobi rotations per update is dynamically determined.
In the “variable forgetting factor” approach, the effective
width of the observation adjusts to the data nonstationar-
ity. The former scheme ensures closeness to convergence
at all times, while the latter adapts the response to data
variation. We consider applications of the SVD updating
algorithm to speech processing of segmentation, adaptive
parameter estimation, and glottal closure detection.

1. INTRODUCTION

In numerous multi-channel estimation, filtering, and beam-
formation signal processing applications, the received wave-
forms are often used in a matrix format. Various linear alge-
braic and optimization techniques are employed to extract
from these matrices useful information for further process-
ing. Basic parameters such as numerical rank and singu-
lar values/vectors/subspaces are used for the calculation of
filter weights, predictor coefficients, parametrical spectral
estimators, etc. In this paper, we investigate the algorith-
mic and architectural relationships among the input update
rate, the rate of convergence of the Jacobi-SVD algorithm,
and the quality of the SVD processed outputs. This ap-
proach provides new insights on the selection of forgetting
factors needed in adaptive signal processing. We obtain a
real-time nonstationarity indicator of the observed data in
terms of their singular value behavior. This indicator comes
without additional computational expense, as a regular part
of the Jacobi-SVD algorithm for real-time processing. We
demonstrate its usefulness to problems in speech segmenta-
tion and linear prediction.

2. THE JACOBI SVD ALGORITHM

If the SVD of the data matrix, Y = UmEmV,E, is known
at time m, the updated matrix is given by

Jacobi SVD updating algorithm
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It is known that both the QR and the Jacobi rotation steps
can be implemented on a parallel/systolic architecture. [7]
proposed a triangular array composed of relatively simple
cells to implement these operations characterized by a fixed
forgetting rate and a fixed throughput.

2.1. Variable Rotational Rate Scheme

Recently, we have performed extensive study on the track-
ing behavior for nonstationary data of the Jacobi SVD algo-
rithm. From [6], it is known that in high SNR scenarios, the
tracking error within a given time window is only a function
of the actual data variation, for any updating rate, given
that the rotations are computed at fixed speed. Moreover,
it can be proved that for sufficiently slowly changing data,
a slowly updating implementation of the Jacobi SVD algo-
rithm produces the same (or better) estimates than a higher
throughput implementation, for equal computational rate
[3, 4]. When the data variation increases, it would seem
that a higher updating rate is a reasonable choice. How-
ever, by increasing the input rate without increasing the
computation rate, the computed singular matrices are now
farther from convergence. The idea we explored is to “de-
couple” the updating rate from the speed at which rotations
are computed (“rotational rate”). The updating rate is kept
constant, while one dynamically varies the computational
speed, according to the degree of data nonstationarity. This
decoupling can be achieved either by having processors of
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varying computational power, or by mapping the algorithm
onto variable size networks of processors.

Since we are interested in minimizing the number of ro-
tations, we want to know the initial convergence behavior
of the Jacobi algorithm. Unfortunately, no general theory is
known to explain this phenomenon. What is known is that
eventually the off-norm will decrease to zero in a quadratic
fashion, but how long it takes to reach this stage cannot
be exactly predicted. In parallel realizations of the Jacobi
algorithm, where the off-norm monitoring is particularly
difficult, it is common practice to set the number of sweeps
to a predefined value. This approach usually results in a
significant number of unnecessary sweeps. Recently, Gotze
proposed a novel criterion for monitoring the stage of the
diagonalization, which is very appealing for parallel imple-
mentations [1]. Nevertheless, this criterion is only useful to
detect convergence, and not to predict when it might occur.

It can be shown that the mere presence of noise (and
no change in the characteristics of the desired signals) can
cause perturbations in the singular subspaces, but this vari-
ation is quite limited in high SNR. On the other hand, large
changes in the data may require a larger amount of com-
putations for the singular matrices computation, compared
to smaller variations {4]. We limit ourselves to the cases in
which the amount of perturbation can be considered as a
monotonic function of the rate of data change. Consider
the QR factorization required by the updating algorithm,
where X/, is upper triangular. Since we deal here with con-
tinuous variations of the signal subspace, it is likely that
the 7 x 7 leading submatrix of I,, will always contain large
entries above diagonal (r is the numerical rank of the data
matrix). In order to give an estimate to the number of Ja-
cobi rotations needed to diagonalize I;,, what is of interest
is the amount of fill-in in the submatrix of X;, composed
of its (n — r) rightmost columns. This is in turn deter-
mined by the norm of £,,41V,,. Given the partitioned right
singular matrix, Vin = (Vi, Vin), and the incoming vector
Tmt1, define @mi1 = |zmir Vinll/lzm+1ll, m =0,1,... We
choose the quantity am+: to represent the degree of non-
stationarity of the incoming data. This assumption is based
on the fact that, in environments characterized by a high
signal-to-noise ratio (SNR), and where there is little or no
change in the signal parameters, then am41 = 0. Remem-
ber that even in complete stationarity, the mere presence of
noise makes am4; different from zero. The indicator am41
is easily computed in the Jacobi algorithm. It can be shown
that this indicator is, at least for not too large variations,
a monotonic function of the data change.

We have subsequently analyzed the initial convergence
behavior of the Jacobi SVD algorithm, trying to determine
the relationship between the nurmber of Jacobi rotations re-
quired for a satisfactory level of convergence (parameter ¢
of the Jacobi algorithm above) and the degree of data vari-
ation (indicator a;m41). For this reason, we considered the
behavior of the off-norm of the matrix I;, as function of
£. We concluded the following [4]: 1) When am4; is close
to zero, the fill-in concentrates in the r rows of I, cor-
responding to the r larger singular values. Therefore, a
substantial decrease of the off-norm is achieved only for
¢ > r. 2) If am41 is substantially different from zero, but
a € 1, then the fill-in spreads throughout the matrix $),,

and the off-norm decreases more slowly as £ increases from 1
to n. 3) When a = 1, then the number of Jacobi rotations
required for diagonality can become considerably smaller
than for smaller am4:.

We subsequently considered the behavior of the off-
norm of I,, in time, in the context of periodic updating.
If € =1, fixed, then the off-norm stops decreasing after a
given value, and assumes a pseudo-periodic pattern of pe-
riod n. This phenomenon is due to the use of permuted
Jacobi rotations, and the variable balance between the off-
norm increase caused by the QR updating step on the one
hand, and the off-norm decrease achieved by the Jacobi ro-
tations on the other.

For all the previous considerations, we propose the fol-
lowing variable rotational rate scheme, for medium to high
SNR, noise power a3, and numerical rank = r:

e Compare the nonstationarity indicator to a thresh-
old u. Since in a totally stationary environment the
value of [|zm+4+1Vm|l approximates, on average, the
value po = onvn — 1, we suggest that the thresh-
old x be a multiple of uo.

o If aymy1 < p, then choose a value for £ not smaller
than r. Otherwise choose ¢ > n.

e Choose a high enough forgetting factor, which guar-
antees that the diagonal elements of ¥, are suffi-
ciently large (cf. next section).

2.2, Variable Forgetting Scheme

We have also studied the relationship between the data vari-
ation an the appropriate choice for the forgetting factor.
It can be shown analytically, that SVD tracking requires
narrower observation windows, as the rate of data varia-
tion increases. In particular, it can be shown that a rate
of change ¢ times faster in the signal parameters calls for
an observation window ¢ times shorter, which is achieved
by reducing the forgetting factor, 3, to 39 {4]. The aper-
ture of the effective exponential window is controlled by
the forgetting factor in a very simple fashion. No special
hardware is required, other than a device which dynami-
cally updates the value of the forgetting factor, such that
within the associated observation window the data are ap-
proximately stationary. During processing, the forgetting
rate, 8, can be determined by equating the window width
(function of 8) with the observed stationarity interval, N..
According to our analysis, we choose the parameter 8 so
that, within the observation window, the change in the data
is smaller than a given threshold. Given a value for the
forgetting factor, 3, and a threshold, b, the length of the
observation window, Ny, is defined so that g% = b, i.e.,
Nw =logb/log 8. Consistently with our analysis, the data
change from sample m to sample (m + 1) is measured by
the quantity |z m+1 — £m])® = [(Zme1 — T ) VE|? + 020y
When the data are stationary, am4+:1 = on. If the var-
ations are assumed identical for N, consecutive samples,
then, given a bound, =, on the allowable data change, one
can compute Ny as Ny = Z/|[mt1 — Zml||®. If one speci-
fies the data generation model, then all the terms involved
can be given as function of the signal and noise param-
eters. The adaptation of the forgetting factor is possible
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only within given bounds. If it is required that the number
of Jacobi rotations which rediagonalize £’ be kept low, then
the amount of fill-in produced by the QRD step has to be
limited. The fill-in is dependent on the relative magnitude
of the elements of z},,, and the diagonal entries of ', The
size of the diagonal elements of T is in turn related to g
according to 1/4/1 — §2. By assuming that the incoming
data vectors have constant norm (on average, at least lo-
cally), then a rough estimate of Bmia is given by satisfying
B/\/1—=082 > 1, ie, B> Bmin = 0.72. In conclusion,
the forgetting factor can be decreased but not beyond a
given value. The proposed variable forgetting scheme can
be summarized as follows:

e Determine at every time instant the duration of the
stationarity window, Ny;

e Given a threshold b, compute @ so that V% < b;
e Make sure that 3 is not too small, 8 > Bmin.
¢ compute 8 as f = max {bI/waﬂmin}.

3. NUMERICAL EXAMPLES

The proposed SVD updating algorithm can find application
in many situations, such as beamforming, adaptive filtering,
DOA tracking. In this section, we wish to show how the
same algorithm can be applied to the speech processing
scenario.

In the first example, we demonstrate the real-time track-
ing of the SVD of the data matrix of speech signals. Speech
utterances can be segmented into voiced and unvoiced sounds.
A widely used speech production model is composed of an
excitation, of periodic pulses for voiced speech or white
noise for unvoiced speech, onto a vocal tract filter modelled
by a p-th order all-pole time-varying linear filter. Construct
a L x J Toeplitz data matrix Ys,, with the first row given by
{y(m—-L+1),y(m—L),---,y(m—J~ L+2)}, constructed
from an observed speech waveform y(m) corresponding to
the utterance “test.” The SVD of Y, is then dependent on
both the coeflicients of the all-pole filter, and on the corre-
lation properties of the excitation. [2] showed that the rank
of this matrix is related to the model order p. When the
excitation is periodic, then the singular value distribution
of Y, tends to display a low-rank structure, and the small-
est singular values are close to zero; when the excited is
by random white noise, then the singular value distribution
spreads out. Often the voiced sounds are associated with
higher energy than unvoiced ones. Consider the singular
values corresponding to a 20 x 20 data matrices associated
with the utterance of the English word “test” by a male
speaker. In Fig. 1 the distributions are normalized to the
first singular value, and we observed that the singular value
distribution for the sound /e/ falls off more rapidly than
that of the sound /s/. The previous observations motivate
the use of the proposed scheme, which tracks the behav-
ior of the data matrix’s singular values and right singular
vectors. The nonstationary indicator am41 can be used to
detect the boundary between voiced and unvoiced sounds,
task which is known to be difficult in practice. If the sound
is voiced, then @41 falls below a threshold value, whereas
it remains above it when the sound is unvoiced. These re-
sults are shown in Fig. 3, where the waveform associated

to the utterance “test” and the indicator amm41 are plotted
against time. When the voiced sound /e/ exists over time
unit of about 1,500 to over 3,000, there is a corresponding
dip in the indicator over this interval.

In the second example, we show how the computed
SVD can be used for adaptive parameter estimation. Con-
sider the running SVD of the data matrix, and compute an
estimate of the all-pole filter coefficients. For an AR fil-
ter model, y(m) = Gu(m) + a1y(m — 1) + .- + apy(m —
p), for all time instants m, where u(m) are unit variance,
zero mean excitation samples. Given the data matrix, Yy,
defined earlier, when J > p, and the J x 1 vector a =
(l,al,...,aP,O,...,O)T, we have that Yj,a = Gun,, where
um = (u(m — L + 1),u(m — L +2),...,u(m)). In order
to estimate the AR coefficients, a possible strategy is to
find the vector @ that minimizes the norm of Yi,a. If the
SVD of Yy, is given as Yy = UnZn V2, then we have & =
argming ;(1y=1 ||Ymzll = argming ,1)=: ||EmV,f,IxH. The
vector # which minimizes the norm of I,z is given by
3= el = (0,0...,0,1)T, and the norm is equal to the
smallest singular value. It follows that & = vmin/¥mia(1),
where vy, is the right singular vector corresponding to the
smallest singular value. In conclusion, the desired estimated
AR coefficients are given by the singular vector correspond-
ing to the smallest singular value. In Fig. 2 we show the co-
efficient values of a order-9 AR filter, estimated adaptively
by use of the proposed SVD updating algorithm. The coef-
ficient shown were computed between times 2160 and 2165
(corresponding to sound /e/, between glottal closures), and
between times 4360 and 4365 (corresponding to sound /s/)

It is well-known that linear prediction models fit best
during speech segments of less than one pitch period, be-
tween instants of glottal closure, or “epochs.” At glottal
closure, the excitation is present in the data, with the con-
sequence that the linear prediction model does not fit the
data properly and the prediction error is large. The large
deviation between actual and predicted data around a glot-
tal closure instant, due to the abrupt change in glottal flow,
has been used for epoch estimation by many authors. Re-
cently, a new method for glottal closure detection has been
proposed, based on the recursive computation of the Frobe-
nius norm on a sliding window [5]. The algorithm for SVD
updating proposed here can be successfully employed for
glottal closure detection, by keeping track of the behavior
of the individual singular values. In Fig. 4 we show the
behavior of three computed singular values, namely omax,
Omin, and o3, corresponding to the sounds /e/ and /s/ of
the utterance “test.” From this figure we note the clear
periodic pattern of the singular values during a voiced seg-
ment, with pulses at the glottal closure instants. No par-
ticular pattern is discernible for the unvoiced sound. For
comparison, we also show the running Frobenius norm for
the two cases. The computational complexity required here
is much higher than for the method of [5], but the infor-
mation extracted is also larger, and can be used for other
purposes (detection of voiced-unvoiced segments, adaptive
parameter estimation, etc.). Note also that the smaller sin-
gular values have sharper peaks around the epochs than
both the larger singular values and the Frobenius norm.
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Figure 3: Time waveform for the word “test” and norm of
Zm+1Vm as function of time
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Figure 2: AR coefficient of order-9 filter computed us- dowed data matrices. a) and ¢) normal. sing. values for
ing the SVD updating algorithm. Solid lines: times 2160 segment corresponding to /e/ and /s/; b) and d) normal.
to 2165, sound /e/ between glottal closures. Dotted lines: Frobenius norm for segment corresponding to /e/ and /s/

times 4360 to 4365, sound /s/
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